The T1 matrix of the device under test is found as:
\begin{equation} T_{1}=\left[\begin{matrix}A & B\\0 & 0\end{matrix}\right] \end{equation}The matrix equation of the DUT is found as:
\begin{equation} \left[\begin{matrix}V_{i}\\I_{i}\end{matrix}\right]=\left[\begin{matrix}A V_{o} + B I_{o}\\0\end{matrix}\right] \end{equation}The source-to-load transfer is obtained as:
\begin{equation} A_{v}=\frac{R_{\ell}}{A R_{\ell} + B} \end{equation}The input impedance of the DUT is found as:
\begin{equation} z_{i}=\tilde{\infty} \left(A R_{\ell} + B\right) \end{equation}The output impedance of the DUT is found as:
\begin{equation} z_{o}=\frac{B}{A} \end{equation}The numeric values are obtained after solving the equations for $A_v$ and $z_o$ for the target values given below.
The target value of the source-load voltage transfer $A_v$ is:
\begin{equation} A_{v}=1 \end{equation}The target value of the output impedance $z_o$ is:
\begin{equation} z_{o}=50 \end{equation}The antenna capacitance $C_A$ equals:
\begin{equation} C_{A}=6.3 \cdot 10^{-12} \end{equation}The required parameters of the T1 matrix of the DUT are obtained as:
\begin{equation} T_{1}=\left[\begin{matrix}\frac{1}{2} & 25\\0 & 0\end{matrix}\right] \end{equation}Go to ABconcept_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 1.1 © 2009-2022 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.eu
Last project update: 2022-04-01 07:30:35