For frequencies below the resonance frequencies, we can ignore the the parasitic capacitances. In addition, if at the highest frequency $f_{max}$ the load impedance is much larger than $2 \pi f_{max} L_r$, we can also ignore the voltage induced in L1. The circuit can then be as simple as shown below.
"Coupled Coils Simple"
L1 N002 0 L value={L_s} iinit=0
R1 N001 N002 R value={R_s} noisetemp=0 noiseflow=0 dcvar=0
V1 N001 0 V value=0 dc=0 dcvar=0 noise=0
E1 out 0 N002 0 {k_c*sqrt(L_r/L_s)}
.end
| RefDes | Nodes | Refs | Model | Param | Symbolic | Numeric |
|---|---|---|---|---|---|---|
| E1 | out 0 N002 0 | E | value | $k_{c} \left(\frac{L_{r}}{L_{s}}\right)^{0.5}$ | $17.85 k_{c}$ | |
| L1 | N002 0 | L | value | $L_{s}$ | $0.000314$ | |
| iinit | $0$ | $0$ | ||||
| R1 | N001 N002 | R | value | $R_{s}$ | $8.1$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| V1 | N001 0 | V | value | $0$ | $0$ | |
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| noise | $0$ | $0$ |
Go to Coupled-Coils-Simple_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 1.6.0 © 2009-2024 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2024-03-19 13:15:27