"Bandwidth Budgeting" L1 P001 0 L value={L_s} iinit=0 R1 N002 P001 R value={R_s} noisetemp=0 noiseflow=0 dcvar=0 L2 P002 0 L value={L_r} iinit=0 C2 N003 0 C value={C_r} vinit=0 R2 N003 P002 R value={R_r} noisetemp=0 noiseflow=0 dcvar=0 G1 N002 0 N001 0 {1/B_T} C1 N002 0 C value={C_s} vinit=0 V1 N001 0 V value=0 dc=0 dcvar=0 noise=0 E1 out 0 N003 0 {1/A_R/s} R3 N002 0 R value={R_ds} noisetemp=0 noiseflow=0 dcvar=0 R4 N003 0 R value={R_dr} noisetemp=0 noiseflow=0 dcvar=0 K1 L1 L2 {k_c} .end
RefDes | Nodes | Refs | Model | Param | Symbolic | Numeric |
---|---|---|---|---|---|---|
C1 | N002 0 | C | value | $C_{s}$ | $1.091 \cdot 10^{-10}$ | |
vinit | $0$ | $0$ | ||||
C2 | N003 0 | C | value | $C_{r}$ | $2.533 \cdot 10^{-11}$ | |
vinit | $0$ | $0$ | ||||
E1 | out 0 N003 0 | E | value | $\frac{1}{A_{R} s}$ | $\frac{2.471 \cdot 10^{6}}{s}$ | |
G1 | N002 0 N001 0 | G | value | $\frac{1}{B_{T}}$ | $0.03694$ | |
K1 | L1 L2 | K | value | $k_{c}$ | $0.0004887$ | |
L1 | P001 0 | L | value | $L_{s}$ | $0.000314$ | |
iinit | $0$ | $0$ | ||||
L2 | P002 0 | L | value | $L_{r}$ | $0.1$ | |
iinit | $0$ | $0$ | ||||
R1 | N002 P001 | R | value | $R_{s}$ | $8.1$ | |
noisetemp | $0$ | $0$ | ||||
noiseflow | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
dcvarlot | $0$ | $0$ | ||||
R2 | N003 P002 | R | value | $R_{r}$ | $235$ | |
noisetemp | $0$ | $0$ | ||||
noiseflow | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
dcvarlot | $0$ | $0$ | ||||
R3 | N002 0 | R | value | $R_{ds}$ | $R_{ds}$ | |
noisetemp | $0$ | $0$ | ||||
noiseflow | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
dcvarlot | $0$ | $0$ | ||||
R4 | N003 0 | R | value | $R_{dr}$ | $R_{dr}$ | |
noisetemp | $0$ | $0$ | ||||
noiseflow | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
dcvarlot | $0$ | $0$ | ||||
V1 | N001 0 | V | value | $0$ | $0$ | |
dc | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
noise | $0$ | $0$ |
Name | Symbolic | Numeric |
---|---|---|
$A_{R}$ | $4.046 \cdot 10^{-7}$ | $4.046 \cdot 10^{-7}$ |
$A_{Rmin}$ | $4.046 \cdot 10^{-7}$ | $4.046 \cdot 10^{-7}$ |
$A_{t}$ | $-53.7$ | $-53.7$ |
$B_{T}$ | $27.07$ | $27.07$ |
$C_{iRT}$ | $2.2 \cdot 10^{-10}$ | $2.2 \cdot 10^{-10}$ |
$C_{r}$ | $2.533 \cdot 10^{-11}$ | $2.533 \cdot 10^{-11}$ |
$C_{s}$ | $1.091 \cdot 10^{-10}$ | $1.091 \cdot 10^{-10}$ |
$I_{L}$ | $0.000125$ | $0.000125$ |
$Io_{p}$ | $0.03694$ | $0.03694$ |
$L_{r}$ | $0.1$ | $0.1$ |
$L_{s}$ | $0.000314$ | $0.000314$ |
$R_{\ell}$ | $2000$ | $2000$ |
$R_{g max}$ | $6.464 \cdot 10^{8}$ | $6.464 \cdot 10^{8}$ |
$R_{iRT}$ | $1.0 \cdot 10^{6}$ | $1.0 \cdot 10^{6}$ |
$R_{r}$ | $235$ | $235$ |
$R_{s}$ | $8.1$ | $8.1$ |
$SR_{vR}$ | $7854$ | $7854$ |
$SR_{vT}$ | $3.332 \cdot 10^{4}$ | $3.332 \cdot 10^{4}$ |
$S_{iR max}$ | $9.484 \cdot 10^{-24}$ | $9.484 \cdot 10^{-24}$ |
$S_{iT max}$ | $\frac{1.071 \cdot 10^{-11}}{R_{g}^{2}}$ | $\frac{1.071 \cdot 10^{-11}}{R_{g}^{2}}$ |
$S_{vR max}$ | $3.893 \cdot 10^{-18}$ | $3.893 \cdot 10^{-18}$ |
$S_{vT max}$ | $1.071 \cdot 10^{-11}$ | $1.071 \cdot 10^{-11}$ |
$V_{N}$ | $-15$ | $-15$ |
$V_{P}$ | $15$ | $15$ |
$V_{TRcoil}$ | $0.3536$ | $0.3536$ |
$V_{TRp}$ | $1.061$ | $1.061$ |
$V_{i}$ | $1$ | $1$ |
$V_{o}$ | $0.25$ | $0.25$ |
$V_{rec}$ | $0.004494$ | $0.004494$ |
$Z_{i}$ | $1.0 \cdot 10^{4}$ | $1.0 \cdot 10^{4}$ |
$f_{fpl}$ | $5000$ | $5000$ |
$f_{m}$ | $1000$ | $1000$ |
$f_{max}$ | $1.5 \cdot 10^{4}$ | $1.5 \cdot 10^{4}$ |
$f_{min}$ | $60$ | $60$ |
$k_{c}$ | $0.0004887$ | $0.0004887$ |
$v_{on}$ | $0.0001$ | $0.0001$ |
Name |
---|
$R_{ds}$ |
$R_{dr}$ |
$R_{g}$ |
Go to Bandwidth-Budgeting_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 1.6.0 © 2009-2024 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2024-03-04 22:14:51