"Circuit data"

Circuit data

Noise model for determination of $W$, $L$ and $ID$.

Netlist: noiseWLI_p.cir

noiseWLI_p
XU1 P001 0 in PM18_noise ID={ID} IG=0 W={W} L={L}
R1 N001 P002 R value={R_s} noisetemp={T} noiseflow=0 dcvar=0 dcvarlot=0
V1 P002 0 V value=0 dc=0 dcvar=0 noise=0
L1 N001 N002 L value={L_s} iinit=0
R2 N002 0 R value={R_t} noisetemp={T} noiseflow=0 dcvar=0 dcvarlot=0
E1 out 0 in 0 {1/(s*tau_i)}
R3 P001 N002 R value={R_i} noisetemp={T} noiseflow=0 dcvar=0 dcvarlot=0
.lib CMOS18-1.lib
.param L_s=120m R_s=875 tau_i=15.9u R_t=10k
.end
Table: Element data of expanded netlist 'noiseWLI_p'
RefDesNodesRefsModelParamSymbolicNumeric
E1out 0 in 0 E value$\frac{1}{s \tau_{i}}$$\frac{6.289 \cdot 10^{4}}{s}$
F1_XU1P001 0 10_XU1 0 F value$\frac{0.5 s}{\pi f_{T XU1} \left(- \frac{c_{dg XU1} s}{g_{m XU1}} + 1\right)}$$\frac{3.822 \cdot 10^{-8} s}{1 - 4.759 \cdot 10^{-9} s}$
H1_XU1P001 2_XU1 1_XU1 10_XU1 H value$\frac{1}{g_{m XU1} \left(- \frac{c_{dg XU1} s}{g_{m XU1}} + 1\right)}$$\frac{3.237 \cdot 10^{4}}{1 - 4.759 \cdot 10^{-9} s}$
I1_XU10 1_XU1 I value$0$$0$
noise$4 \Gamma_{XU1} N_{s P18} T g_{m XU1} k$$3.347 \cdot 10^{-25}$
dc$0$$0$
dcvar$0$$0$
I2_XU1P001 0 I value$0$$0$
noise$0$$0$
dc$0$$0$
dcvar$0$$0$
I_noise_R1N001 P002 I noise$\frac{4 T k}{R_{s}}$$1.893 \cdot 10^{-23}$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
I_noise_R2N002 0 I noise$\frac{4 T k}{R_{t}}$$2.195 \cdot 10^{-24}$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
I_noise_R3P001 N002 I noise$\frac{4 T k}{R_{i}}$$1.657 \cdot 10^{-24}$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
L1N001 N002 L value$L_{s}$$0.12$
iinit$0$$0$
R1N001 P002 R value$R_{s}$$875$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
R2N002 0 R value$R_{t}$$7547.0$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
R3P001 N002 R value$R_{i}$$1.0 \cdot 10^{4}$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
V1P002 0 V value$0$$0$
dc$0$$0$
dcvar$0$$0$
noise$0$$0$
V1_XU12_XU1 in V value$0$$0$
noise$f^{- AF_{P18}} k_{f XU1}$$\frac{6.99 \cdot 10^{-14}}{f^{1.2}}$
dc$0$$0$
dcvar$0$$0$
Table: Parameter definitions in 'noiseWLI_p'.
NameSymbolicNumeric
$AF_{P18}$$1.2$$1.2$
$CGBO_{P18}$$1.0 \cdot 10^{-12}$$1.0 \cdot 10^{-12}$
$CGSO_{P18}$$3.5 \cdot 10^{-10}$$3.5 \cdot 10^{-10}$
$CJB_{0 P18}$$0.001$$0.001$
$C_{OX P18}$$\frac{\epsilon_{0} \epsilon_{SiO2}}{TOX_{P18}}$$0.008633$
$C_{i}$$1.59 \cdot 10^{-9}$$1.59 \cdot 10^{-9}$
$E_{CRIT P18}$$1.0 \cdot 10^{9}$$1.0 \cdot 10^{9}$
$ID$$-1.082 \cdot 10^{-6}$$-1.082 \cdot 10^{-6}$
$I_{0 P18}$$2 C_{OX P18} N_{s P18} U_{T}^{2} u_{0 P18}$$1.38 \cdot 10^{-7}$
$I_{fb}$$4.022 \cdot 10^{-5}$$4.022 \cdot 10^{-5}$
$KF_{P18}$$2.0 \cdot 10^{-27}$$2.0 \cdot 10^{-27}$
$L$$1.0 \cdot 10^{-6}$$1.0 \cdot 10^{-6}$
$LDS_{P18}$$1.8 \cdot 10^{-7}$$1.8 \cdot 10^{-7}$
$L_{Mp}$$1.0 \cdot 10^{-6}$$1.0 \cdot 10^{-6}$
$L_{s}$$0.12$$0.12$
$N_{s P18}$$1.3$$1.3$
$R_{i}$$1.0 \cdot 10^{4}$$1.0 \cdot 10^{4}$
$R_{s}$$875$$875$
$R_{t}$$7547.0$$7547.0$
$Ri_{max}$$1.0 \cdot 10^{4}$$1.0 \cdot 10^{4}$
$SRCnoise$$1.819 \cdot 10^{-6}$$1.819 \cdot 10^{-6}$
$T$$300$$300$
$TOX_{P18}$$4.0 \cdot 10^{-9}$$4.0 \cdot 10^{-9}$
$\Theta_{P18}$$0.4$$0.4$
$U_{T}$$\frac{T k}{q}$$0.02585$
$V_{KF P18}$$0.2$$0.2$
$V_{onoise}$$1.191 \cdot 10^{-5}$$1.191 \cdot 10^{-5}$
$V_{onoise gmCissP}$$1.308 \cdot 10^{-5}$$1.308 \cdot 10^{-5}$
$Vi_{ADC}$$0.9$$0.9$
$Vi_{pp}$$0.3215$$0.3215$
$W$$0.00042$$0.00042$
$c$$2.998 \cdot 10^{8}$$2.998 \cdot 10^{8}$
$c_{issP}$$1.205 \cdot 10^{-12}$$1.205 \cdot 10^{-12}$
$c_{iss costs minP}$$1.205 \cdot 10^{-12}$$1.205 \cdot 10^{-12}$
$c_{iss g m minP}$$7.23 \cdot 10^{-10}$$7.23 \cdot 10^{-10}$
$\epsilon_{0}$$\frac{1}{c^{2} \mu_{0}}$$8.854 \cdot 10^{-12}$
$\epsilon_{SiO2}$$3.9$$3.9$
$f_{fp}$$5000$$5000$
$f_{max}$$6000$$6000$
$f_{min}$$300$$300$
$g_{mP}$$3.089 \cdot 10^{-5}$$3.089 \cdot 10^{-5}$
$g_{m costs minP}$$3.089 \cdot 10^{-5}$$3.089 \cdot 10^{-5}$
$g_{m minP}$$1.54 \cdot 10^{-5}$$1.54 \cdot 10^{-5}$
$k$$1.381 \cdot 10^{-23}$$1.381 \cdot 10^{-23}$
$\mu_{0}$$4.0 \cdot 10^{-7} \pi$$1.257 \cdot 10^{-6}$
$n_{Ri}$$0.25$$0.25$
$n_{SRC}$$0.02333$$0.02333$
$q$$1.602 \cdot 10^{-19}$$1.602 \cdot 10^{-19}$
$\tau_{i}$$1.59 \cdot 10^{-5}$$1.59 \cdot 10^{-5}$
$u_{0 P18}$$0.0092$$0.0092$
$\Gamma_{XU1}$$\frac{0.6667 IC_{XU1} + 0.5}{IC_{XU1} + 1}$$0.5031$
$IC_{CRIT XU1}$$\frac{0.0625}{N_{s P18}^{2} U_{T}^{2} \left(\Theta_{P18} + \frac{1}{E_{CRIT P18} L}\right)^{2}}$$344.1$
$IC_{XU1}$$- \frac{2.306 \cdot 10^{6} \pi ID L}{W}$$0.01867$
$c_{db XU1}$$CJB_{0 P18} LDS_{P18} W$$7.56 \cdot 10^{-14}$
$c_{dg XU1}$$CGSO_{P18} W$$1.47 \cdot 10^{-13}$
$c_{gb XU1}$$2 CGBO_{P18} L + \frac{0.3333 C_{OX P18} L W \left(N_{s P18} - 1\right) \left(x_{XU1} + 1\right)}{N_{s P18}}$$8.217 \cdot 10^{-13}$
$c_{gs XU1}$$CGSO_{P18} W + C_{OX P18} L W \left(0.6667 - 0.3333 x_{XU1}\right)$$2.119 \cdot 10^{-13}$
$c_{iss XU1}$$c_{dg XU1} + c_{gb XU1} + c_{gs XU1}$$1.181 \cdot 10^{-12}$
$f_{T XU1}$$\frac{0.5 g_{m XU1}}{\pi c_{iss XU1}}$$4.164 \cdot 10^{6}$
$f_{\ell XU1}$$\left(\frac{0.5 \pi KF_{P18} f_{T XU1} \left(- 0.3333 x_{XU1} + 0.6667 + \frac{\left(N_{s P18} - 1\right) \left(0.3333 x_{XU1} + 0.3333\right)}{N_{s P18}}\right)}{C_{OX P18} \Gamma_{XU1} N_{s P18} T k}\right)^{\frac{1}{AF_{P18}}}$$60.27$
$g_{m XU1}$$- \frac{ID}{N_{s P18} U_{T} \left(IC_{XU1} \cdot \left(1 + \frac{IC_{XU1}}{IC_{CRIT XU1}}\right) + 0.5 \left(IC_{XU1} \cdot \left(1 + \frac{IC_{XU1}}{IC_{CRIT XU1}}\right)\right)^{0.5} + 1\right)^{0.5}}$$3.089 \cdot 10^{-5}$
$k_{f XU1}$$\frac{4 KF_{P18} \left(\frac{IC_{XU1}^{0.5} N_{s P18} U_{T}}{V_{KF P18}} + 0.5\right)^{2}}{C_{OX P18}^{2} L W}$$6.99 \cdot 10^{-14}$
$x_{XU1}$$\frac{\left(IC_{XU1} + 0.25\right)^{0.5} + 1.5}{\left(\left(IC_{XU1} + 0.25\right)^{0.5} + 0.5\right)^{2}}$$1.946$

Go to noiseWLI_p_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2024-01-07 12:49:39