"Circuit data NMOS"

Circuit data NMOS

Noise model for determination of $W$, $L$ and $ID$.

Netlist: noiseWLI_n.cir

noiseWLI_n
XU1 P001 0 in NM18_noise ID={ID} IG=0 W={W} L={L}
R1 N001 P002 R value={R_s} noisetemp={T} noiseflow=0 dcvar=0 dcvarlot=0
V1 P002 0 V value=0 dc=0 dcvar=0 noise=0
L1 N001 N002 L value={L_s} iinit=0
R2 N002 0 R value={R_t} noisetemp={T} noiseflow=0 dcvar=0 dcvarlot=0
E1 out 0 in 0 {1/(s*tau_i)}
R3 P001 N002 R value={R_i} noisetemp={T} noiseflow=0 dcvar=0 dcvarlot=0
.lib CMOS18-1.lib
.param L_s=120m R_s=875 tau_i=15.9u R_t=10k
.end
Table: Element data of expanded netlist 'noiseWLI_n'
RefDesNodesRefsModelParamSymbolicNumeric
E1out 0 in 0 E value$\frac{1}{s \tau_{i}}$$\frac{6.289 \cdot 10^{4}}{s}$
F1_XU1P001 0 10_XU1 0 F value$\frac{0.5 s}{\pi f_{T XU1} \left(- \frac{c_{dg XU1} s}{g_{m XU1}} + 1\right)}$$\frac{8.878 \cdot 10^{-7} s}{1 - 1.706 \cdot 10^{-8} s}$
H1_XU1P001 2_XU1 1_XU1 10_XU1 H value$\frac{1}{g_{m XU1} \left(- \frac{c_{dg XU1} s}{g_{m XU1}} + 1\right)}$$\frac{3.24 \cdot 10^{4}}{1 - 1.706 \cdot 10^{-8} s}$
I1_XU10 1_XU1 I value$0$$0$
noise$4 \Gamma_{XU1} N_{s N18} T g_{m XU1} k$$3.333 \cdot 10^{-25}$
dc$0$$0$
dcvar$0$$0$
I2_XU1P001 0 I value$0$$0$
noise$0$$0$
dc$0$$0$
dcvar$0$$0$
I_noise_R1N001 P002 I noise$\frac{4 T k}{R_{s}}$$1.893 \cdot 10^{-23}$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
I_noise_R2N002 0 I noise$\frac{4 T k}{R_{t}}$$2.195 \cdot 10^{-24}$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
I_noise_R3P001 N002 I noise$\frac{4 T k}{R_{i}}$$1.657 \cdot 10^{-24}$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
L1N001 N002 L value$L_{s}$$0.12$
iinit$0$$0$
R1N001 P002 R value$R_{s}$$875$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
R2N002 0 R value$R_{t}$$7547.0$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
R3P001 N002 R value$R_{i}$$1.0 \cdot 10^{4}$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
V1P002 0 V value$0$$0$
dc$0$$0$
dcvar$0$$0$
noise$0$$0$
V1_XU12_XU1 in V value$0$$0$
noise$f^{- AF_{N18}} k_{f XU1}$$\frac{1.103 \cdot 10^{-14}}{f^{0.82}}$
dc$0$$0$
dcvar$0$$0$
Table: Parameter definitions in 'noiseWLI_n'.
NameSymbolicNumeric
$AF_{N18}$$0.82$$0.82$
$CGBO_{N18}$$1.0 \cdot 10^{-12}$$1.0 \cdot 10^{-12}$
$CGSO_{N18}$$3.9 \cdot 10^{-10}$$3.9 \cdot 10^{-10}$
$CJB_{0 N18}$$0.001$$0.001$
$C_{OX N18}$$\frac{\epsilon_{0} \epsilon_{SiO2}}{TOX_{N18}}$$0.008222$
$C_{i}$$1.59 \cdot 10^{-9}$$1.59 \cdot 10^{-9}$
$E_{CRIT N18}$$1.0 \cdot 10^{7}$$1.0 \cdot 10^{7}$
$ID$$1.066 \cdot 10^{-6}$$1.066 \cdot 10^{-6}$
$I_{0 N18}$$2 C_{OX N18} N_{s N18} U_{T}^{2} u_{0 N18}$$9.001 \cdot 10^{-7}$
$I_{fb}$$4.022 \cdot 10^{-5}$$4.022 \cdot 10^{-5}$
$KF_{N18}$$1.0 \cdot 10^{-26}$$1.0 \cdot 10^{-26}$
$L$$1.0 \cdot 10^{-5}$$1.0 \cdot 10^{-5}$
$LDS_{N18}$$1.8 \cdot 10^{-7}$$1.8 \cdot 10^{-7}$
$L_{Mn}$$1.0 \cdot 10^{-5}$$1.0 \cdot 10^{-5}$
$L_{s}$$0.12$$0.12$
$N_{s N18}$$1.3$$1.3$
$R_{i}$$1.0 \cdot 10^{4}$$1.0 \cdot 10^{4}$
$R_{s}$$875$$875$
$R_{t}$$7547.0$$7547.0$
$Ri_{max}$$1.0 \cdot 10^{4}$$1.0 \cdot 10^{4}$
$SRCnoise$$1.819 \cdot 10^{-6}$$1.819 \cdot 10^{-6}$
$T$$300$$300$
$TOX_{N18}$$4.2 \cdot 10^{-9}$$4.2 \cdot 10^{-9}$
$\Theta_{N18}$$0.43$$0.43$
$U_{T}$$\frac{T k}{q}$$0.02585$
$V_{KF N18}$$2$$2$
$V_{onoise}$$1.191 \cdot 10^{-5}$$1.191 \cdot 10^{-5}$
$V_{onoise gmCissN}$$1.308 \cdot 10^{-5}$$1.308 \cdot 10^{-5}$
$Vi_{ADC}$$0.9$$0.9$
$Vi_{pp}$$0.3215$$0.3215$
$W$$0.00135$$0.00135$
$c$$2.998 \cdot 10^{8}$$2.998 \cdot 10^{8}$
$c_{issN}$$2.839 \cdot 10^{-11}$$2.839 \cdot 10^{-11}$
$c_{iss costs minN}$$2.839 \cdot 10^{-11}$$2.839 \cdot 10^{-11}$
$c_{iss g m minN}$$1.194 \cdot 10^{-9}$$1.194 \cdot 10^{-9}$
$\epsilon_{0}$$\frac{1}{c^{2} \mu_{0}}$$8.854 \cdot 10^{-12}$
$\epsilon_{SiO2}$$3.9$$3.9$
$f_{fp}$$5000$$5000$
$f_{max}$$6000$$6000$
$f_{min}$$300$$300$
$g_{mN}$$3.086 \cdot 10^{-5}$$3.086 \cdot 10^{-5}$
$g_{m costs minN}$$3.086 \cdot 10^{-5}$$3.086 \cdot 10^{-5}$
$g_{m minN}$$1.56 \cdot 10^{-5}$$1.56 \cdot 10^{-5}$
$k$$1.381 \cdot 10^{-23}$$1.381 \cdot 10^{-23}$
$\mu_{0}$$4.0 \cdot 10^{-7} \pi$$1.257 \cdot 10^{-6}$
$n_{Ri}$$0.25$$0.25$
$n_{SRC}$$0.02333$$0.02333$
$q$$1.602 \cdot 10^{-19}$$1.602 \cdot 10^{-19}$
$\tau_{i}$$1.59 \cdot 10^{-5}$$1.59 \cdot 10^{-5}$
$u_{0 N18}$$0.063$$0.063$
$\Gamma_{XU1}$$\frac{0.6667 IC_{XU1} + 0.5}{IC_{XU1} + 1}$$0.5014$
$IC_{CRIT XU1}$$\frac{0.0625}{N_{s N18}^{2} U_{T}^{2} \left(\Theta_{N18} + \frac{1}{E_{CRIT N18} L}\right)^{2}}$$285.8$
$IC_{XU1}$$\frac{1.216 \cdot 10^{7} \pi ID L \left(\frac{\pi ID L \left(1 + \frac{2.326 \cdot 10^{-7}}{L}\right)^{2}}{W} + 0.0008462\right)^{0.5}}{W}$$0.008771$
$IC_{i XU1}$$\frac{ID L}{I_{0 N18} W}$$0.008771$
$c_{db XU1}$$CJB_{0 N18} LDS_{N18} W$$2.43 \cdot 10^{-13}$
$c_{dg XU1}$$CGSO_{N18} W$$5.265 \cdot 10^{-13}$
$c_{gb XU1}$$2 CGBO_{N18} L + \frac{0.3333 C_{OX N18} L W \left(N_{s N18} - 1\right) \left(x_{XU1} + 1\right)}{N_{s N18}}$$2.539 \cdot 10^{-11}$
$c_{gs XU1}$$CGSO_{N18} W + C_{OX N18} L W \left(0.6667 - 0.3333 x_{XU1}\right)$$1.481 \cdot 10^{-12}$
$c_{iss XU1}$$c_{dg XU1} + c_{gb XU1} + c_{gs XU1}$$2.74 \cdot 10^{-11}$
$f_{T XU1}$$\frac{0.5 g_{m XU1}}{\pi c_{iss XU1}}$$1.793 \cdot 10^{5}$
$f_{\ell XU1}$$\left(\frac{0.5 \pi KF_{N18} f_{T XU1} \left(- 0.3333 x_{XU1} + 0.6667 + \frac{\left(N_{s N18} - 1\right) \left(0.3333 x_{XU1} + 0.3333\right)}{N_{s N18}}\right)}{C_{OX N18} \Gamma_{XU1} N_{s N18} T k}\right)^{\frac{1}{AF_{N18}}}$$63.58$
$g_{m XU1}$$\frac{ID}{N_{s N18} U_{T} \left(IC_{XU1} \cdot \left(1 + \frac{IC_{XU1}}{IC_{CRIT XU1}}\right) + 0.5 \left(IC_{XU1} \cdot \left(1 + \frac{IC_{XU1}}{IC_{CRIT XU1}}\right)\right)^{0.5} + 1\right)^{0.5}}$$3.086 \cdot 10^{-5}$
$k_{f XU1}$$\frac{4 KF_{N18} \left(\frac{IC_{XU1}^{0.5} N_{s N18} U_{T}}{V_{KF N18}} + 0.5\right)^{2}}{C_{OX N18}^{2} L W}$$1.103 \cdot 10^{-14}$
$x_{XU1}$$\frac{\left(IC_{XU1} + 0.25\right)^{0.5} + 1.5}{\left(\left(IC_{XU1} + 0.25\right)^{0.5} + 0.5\right)^{2}}$$1.974$

Go to noiseWLI_n_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2023-12-28 22:44:08