noiseWLI_p XU1 P001 0 in PM18_noise ID={ID} IG=0 W={W} L={L} R1 N001 P002 R value={R_s} noisetemp={T} noiseflow=0 dcvar=0 dcvarlot=0 V1 P002 0 V value=0 dc=0 dcvar=0 noise=0 L1 N001 N002 L value={L_s} iinit=0 R2 N002 0 R value={R_t} noisetemp={T} noiseflow=0 dcvar=0 dcvarlot=0 E1 out 0 in 0 {1/(s*tau_i)} R3 P001 N002 R value={R_i} noisetemp={T} noiseflow=0 dcvar=0 dcvarlot=0 .lib CMOS18-1.lib .param L_s=120m R_s=875 tau_i=15.9u R_t=10k .end
RefDes | Nodes | Refs | Model | Param | Symbolic | Numeric |
---|---|---|---|---|---|---|
E1 | out 0 in 0 | E | value | $\frac{1}{s \tau_{i}}$ | $\frac{6.289 \cdot 10^{4}}{s}$ | |
F1_XU1 | P001 0 10_XU1 0 | F | value | $\frac{0.5 s}{\pi f_{T XU1} \left(- \frac{c_{dg XU1} s}{g_{m XU1}} + 1\right)}$ | $\frac{3.822 \cdot 10^{-8} s}{1 - 4.759 \cdot 10^{-9} s}$ | |
H1_XU1 | P001 2_XU1 1_XU1 10_XU1 | H | value | $\frac{1}{g_{m XU1} \left(- \frac{c_{dg XU1} s}{g_{m XU1}} + 1\right)}$ | $\frac{3.237 \cdot 10^{4}}{1 - 4.759 \cdot 10^{-9} s}$ | |
I1_XU1 | 0 1_XU1 | I | value | $0$ | $0$ | |
noise | $4 \Gamma_{XU1} N_{s P18} T g_{m XU1} k$ | $3.347 \cdot 10^{-25}$ | ||||
dc | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
I2_XU1 | P001 0 | I | value | $0$ | $0$ | |
noise | $0$ | $0$ | ||||
dc | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
I_noise_R1 | N001 P002 | I | noise | $\frac{4 T k}{R_{s}}$ | $1.893 \cdot 10^{-23}$ | |
value | $0$ | $0$ | ||||
dc | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
I_noise_R2 | N002 0 | I | noise | $\frac{4 T k}{R_{t}}$ | $2.195 \cdot 10^{-24}$ | |
value | $0$ | $0$ | ||||
dc | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
I_noise_R3 | P001 N002 | I | noise | $\frac{4 T k}{R_{i}}$ | $1.657 \cdot 10^{-24}$ | |
value | $0$ | $0$ | ||||
dc | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
L1 | N001 N002 | L | value | $L_{s}$ | $0.12$ | |
iinit | $0$ | $0$ | ||||
R1 | N001 P002 | R | value | $R_{s}$ | $875$ | |
noisetemp | $T$ | $300$ | ||||
noiseflow | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
dcvarlot | $0$ | $0$ | ||||
R2 | N002 0 | R | value | $R_{t}$ | $7547.0$ | |
noisetemp | $T$ | $300$ | ||||
noiseflow | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
dcvarlot | $0$ | $0$ | ||||
R3 | P001 N002 | R | value | $R_{i}$ | $1.0 \cdot 10^{4}$ | |
noisetemp | $T$ | $300$ | ||||
noiseflow | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
dcvarlot | $0$ | $0$ | ||||
V1 | P002 0 | V | value | $0$ | $0$ | |
dc | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
noise | $0$ | $0$ | ||||
V1_XU1 | 2_XU1 in | V | value | $0$ | $0$ | |
noise | $f^{- AF_{P18}} k_{f XU1}$ | $\frac{6.99 \cdot 10^{-14}}{f^{1.2}}$ | ||||
dc | $0$ | $0$ | ||||
dcvar | $0$ | $0$ |
Name | Symbolic | Numeric |
---|---|---|
$AF_{P18}$ | $1.2$ | $1.2$ |
$CGBO_{P18}$ | $1.0 \cdot 10^{-12}$ | $1.0 \cdot 10^{-12}$ |
$CGSO_{P18}$ | $3.5 \cdot 10^{-10}$ | $3.5 \cdot 10^{-10}$ |
$CJB_{0 P18}$ | $0.001$ | $0.001$ |
$C_{OX P18}$ | $\frac{\epsilon_{0} \epsilon_{SiO2}}{TOX_{P18}}$ | $0.008633$ |
$C_{i}$ | $1.59 \cdot 10^{-9}$ | $1.59 \cdot 10^{-9}$ |
$E_{CRIT P18}$ | $1.0 \cdot 10^{9}$ | $1.0 \cdot 10^{9}$ |
$ID$ | $-1.082 \cdot 10^{-6}$ | $-1.082 \cdot 10^{-6}$ |
$I_{0 P18}$ | $2 C_{OX P18} N_{s P18} U_{T}^{2} u_{0 P18}$ | $1.38 \cdot 10^{-7}$ |
$I_{fb}$ | $4.022 \cdot 10^{-5}$ | $4.022 \cdot 10^{-5}$ |
$KF_{P18}$ | $2.0 \cdot 10^{-27}$ | $2.0 \cdot 10^{-27}$ |
$L$ | $1.0 \cdot 10^{-6}$ | $1.0 \cdot 10^{-6}$ |
$LDS_{P18}$ | $1.8 \cdot 10^{-7}$ | $1.8 \cdot 10^{-7}$ |
$L_{Mp}$ | $1.0 \cdot 10^{-6}$ | $1.0 \cdot 10^{-6}$ |
$L_{s}$ | $0.12$ | $0.12$ |
$N_{s P18}$ | $1.3$ | $1.3$ |
$R_{i}$ | $1.0 \cdot 10^{4}$ | $1.0 \cdot 10^{4}$ |
$R_{s}$ | $875$ | $875$ |
$R_{t}$ | $7547.0$ | $7547.0$ |
$Ri_{max}$ | $1.0 \cdot 10^{4}$ | $1.0 \cdot 10^{4}$ |
$SRCnoise$ | $1.819 \cdot 10^{-6}$ | $1.819 \cdot 10^{-6}$ |
$T$ | $300$ | $300$ |
$TOX_{P18}$ | $4.0 \cdot 10^{-9}$ | $4.0 \cdot 10^{-9}$ |
$\Theta_{P18}$ | $0.4$ | $0.4$ |
$U_{T}$ | $\frac{T k}{q}$ | $0.02585$ |
$V_{KF P18}$ | $0.2$ | $0.2$ |
$V_{onoise}$ | $1.191 \cdot 10^{-5}$ | $1.191 \cdot 10^{-5}$ |
$V_{onoise gmCissP}$ | $1.308 \cdot 10^{-5}$ | $1.308 \cdot 10^{-5}$ |
$Vi_{ADC}$ | $0.9$ | $0.9$ |
$Vi_{pp}$ | $0.3215$ | $0.3215$ |
$W$ | $0.00042$ | $0.00042$ |
$c$ | $2.998 \cdot 10^{8}$ | $2.998 \cdot 10^{8}$ |
$c_{issP}$ | $1.205 \cdot 10^{-12}$ | $1.205 \cdot 10^{-12}$ |
$c_{iss costs minP}$ | $1.205 \cdot 10^{-12}$ | $1.205 \cdot 10^{-12}$ |
$c_{iss g m minP}$ | $7.23 \cdot 10^{-10}$ | $7.23 \cdot 10^{-10}$ |
$\epsilon_{0}$ | $\frac{1}{c^{2} \mu_{0}}$ | $8.854 \cdot 10^{-12}$ |
$\epsilon_{SiO2}$ | $3.9$ | $3.9$ |
$f_{fp}$ | $5000$ | $5000$ |
$f_{max}$ | $6000$ | $6000$ |
$f_{min}$ | $300$ | $300$ |
$g_{mP}$ | $3.089 \cdot 10^{-5}$ | $3.089 \cdot 10^{-5}$ |
$g_{m costs minP}$ | $3.089 \cdot 10^{-5}$ | $3.089 \cdot 10^{-5}$ |
$g_{m minP}$ | $1.54 \cdot 10^{-5}$ | $1.54 \cdot 10^{-5}$ |
$k$ | $1.381 \cdot 10^{-23}$ | $1.381 \cdot 10^{-23}$ |
$\mu_{0}$ | $4.0 \cdot 10^{-7} \pi$ | $1.257 \cdot 10^{-6}$ |
$n_{Ri}$ | $0.25$ | $0.25$ |
$n_{SRC}$ | $0.02333$ | $0.02333$ |
$q$ | $1.602 \cdot 10^{-19}$ | $1.602 \cdot 10^{-19}$ |
$\tau_{i}$ | $1.59 \cdot 10^{-5}$ | $1.59 \cdot 10^{-5}$ |
$u_{0 P18}$ | $0.0092$ | $0.0092$ |
$\Gamma_{XU1}$ | $\frac{0.6667 IC_{XU1} + 0.5}{IC_{XU1} + 1}$ | $0.5031$ |
$IC_{CRIT XU1}$ | $\frac{0.0625}{N_{s P18}^{2} U_{T}^{2} \left(\Theta_{P18} + \frac{1}{E_{CRIT P18} L}\right)^{2}}$ | $344.1$ |
$IC_{XU1}$ | $- \frac{2.306 \cdot 10^{6} \pi ID L}{W}$ | $0.01867$ |
$c_{db XU1}$ | $CJB_{0 P18} LDS_{P18} W$ | $7.56 \cdot 10^{-14}$ |
$c_{dg XU1}$ | $CGSO_{P18} W$ | $1.47 \cdot 10^{-13}$ |
$c_{gb XU1}$ | $2 CGBO_{P18} L + \frac{0.3333 C_{OX P18} L W \left(N_{s P18} - 1\right) \left(x_{XU1} + 1\right)}{N_{s P18}}$ | $8.217 \cdot 10^{-13}$ |
$c_{gs XU1}$ | $CGSO_{P18} W + C_{OX P18} L W \left(0.6667 - 0.3333 x_{XU1}\right)$ | $2.119 \cdot 10^{-13}$ |
$c_{iss XU1}$ | $c_{dg XU1} + c_{gb XU1} + c_{gs XU1}$ | $1.181 \cdot 10^{-12}$ |
$f_{T XU1}$ | $\frac{0.5 g_{m XU1}}{\pi c_{iss XU1}}$ | $4.164 \cdot 10^{6}$ |
$f_{\ell XU1}$ | $\left(\frac{0.5 \pi KF_{P18} f_{T XU1} \left(- 0.3333 x_{XU1} + 0.6667 + \frac{\left(N_{s P18} - 1\right) \left(0.3333 x_{XU1} + 0.3333\right)}{N_{s P18}}\right)}{C_{OX P18} \Gamma_{XU1} N_{s P18} T k}\right)^{\frac{1}{AF_{P18}}}$ | $60.27$ |
$g_{m XU1}$ | $- \frac{ID}{N_{s P18} U_{T} \left(IC_{XU1} \cdot \left(1 + \frac{IC_{XU1}}{IC_{CRIT XU1}}\right) + 0.5 \left(IC_{XU1} \cdot \left(1 + \frac{IC_{XU1}}{IC_{CRIT XU1}}\right)\right)^{0.5} + 1\right)^{0.5}}$ | $3.089 \cdot 10^{-5}$ |
$k_{f XU1}$ | $\frac{4 KF_{P18} \left(\frac{IC_{XU1}^{0.5} N_{s P18} U_{T}}{V_{KF P18}} + 0.5\right)^{2}}{C_{OX P18}^{2} L W}$ | $6.99 \cdot 10^{-14}$ |
$x_{XU1}$ | $\frac{\left(IC_{XU1} + 0.25\right)^{0.5} + 1.5}{\left(\left(IC_{XU1} + 0.25\right)^{0.5} + 0.5\right)^{2}}$ | $1.946$ |
Go to noiseWLI_p_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2024-01-07 12:49:39