Symbolic Laplace Transform

Circuit diagram

The Laplace Transform of the transfer VscopeVs is:

(1)VscopeVs=Rb(CaRas+1)(Ra+Rb+Rs)(CaCbLgRaRbs3Ra+Rb+Rs+s2(CaCbRaRbRs+CaLgRa+CbLgRb)Ra+Rb+Rs+s(CaRaRb+CaRaRs+CbRaRb+CbRbRs+Lg)Ra+Rb+Rs+1)

If the probe is correctly calibrated, we substitute:

(2)Cb=CaRaRb

The expression of the transfer then simplifies to:

(3)VscopeVs=Rb(CaRas+1)(Ra+Rb+Rs)(Ca2LgRa2s3Ra+Rb+Rs+s2(Ca2Ra2Rs+2CaLgRa)Ra+Rb+Rs+s(CaRa2+CaRaRb+2CaRaRs+Lg)Ra+Rb+Rs+1)

If we factorize this result we obtain:

(4)VscopeVs=RbCaLgRas2+CaRaRss+Lgs+Ra+Rb+Rs

If we normalize this result, we obtain:

(5)VscopeVs=Rb(Ra+Rb+Rs)(CaLgRas2Ra+Rb+Rs+s(CaRaRs+Lg)Ra+Rb+Rs+1)

The initial value (Rs=0,Lg=0) and the final value (Rs=0) of the step response, are:

(6)μ(0)=CaCa+Cb (7)μ()=RbRa+Rb

The probe is calibrated if the initial value equals the final value:

(8)Cb=CaRaRb

The relative overshoot ϵ can be expressed in terms of the relative detuning δ of Cb:

(9)ϵ=9δ9δ+10
Relative overshoot versus the relative detuning of the probe
Figure: overshoot_detuning.svg
Relative overshoot versus the relative detuning of the probe

Go to ProbeSymbolic_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 3.3.2 © 2009-2025 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2025-03-09 21:36:43