LNA

May 6, 2021

1 Low-noise RF amplifier

A low-noise RF amplifier converts the voltage of 300 balanced floating source into a current for a mixer.

1.1 Signal and signal source

The signal source is isolated from the ground. It has a differential impedance of 300Ω and a common-mode impedance of 0.5pF. The frequency range of interest ranges from $1 \cdots 250$ MHz.

1.2 Load and load signal

The load consists of a balanced mixer with a differential impedance of 100Ω and a common-mode impedance of 1pF. It should be driven with a current and the maximum peak differential input current should be 500μ A. The common-mode input voltage range of the load ranges from $0.8 \cdots 1$ V.

1.3 The LNA

The low-noise amplifier should have the following properties:

- 1. Input impedance: $300\Omega\pm5\%$
- 2. Frequency range $(-3dB): 1 \cdots 250MHz$
- 3. Differential output impedance: $> 10 \mathrm{k}\Omega$
- 4. Noise figure @300 Ω source impedance: $<2.5 {\rm dB}$ over the frequency range of interest.
- 5. Gain from input voltage to load current $40 \text{mS} \pm 10\%$
- 6. IM3 distortion at 100MHz (5mV $_{\rm p}$ at 200MHz $\,$ and 5mV $_{\rm p}$ at 500MHz) $\,<-66{\rm dB}$
- 7. Peak differential output current $> 500 \mu {\rm A}$
- 8. Supply current @1.8V supply voltage < 20mA

1.4 Environmental conditions

The audio amplifier should operate from 0 to 70 degrees Celsius.

1.5 Design task

Design the LNA according to the specifications above. You can use CMOS18 devices. The circuit should operate from at $1.8V\pm5\%$.