Circuit data

Schematic diagram of SLiCAP_LTD.kicad_sch

Circuit diagram of SLiCAP_LTD.
Figure: SLiCAP_LTD.svg
Circuit diagram of SLiCAP_LTD.

Netlist: SLiCAP_LTD.cir

"SLiCAP_LTD"
.source V1
.detector V_out
.param R_s=50 L_se=10n R_se=9M R_i=1M C_c=10p C_i=90p
C1 1 out C value={C_c} vinit=0
C2 out 0 C value={C_i} vinit=0
L1 2 1 L value={L_se} iinit=0
R1 3 2 R value={R_s} noisetemp=0 noiseflow=0 dcvar=0 dcvarlot=0
R2 1 out R value={R_se} noisetemp=0 noiseflow=0 dcvar=0 dcvarlot=0
R3 out 0 R value={R_i} noisetemp=0 noiseflow=0 dcvar=0 dcvarlot=0
V1 3 0 V value=0 noise=0 dc=0 dcvar=0
.end
Expanded netlist of SLiCAP_LTD.cir.
RefDesNodesRefsModelParamSymbolicNumeric
C11 out C value$C_{c}$$1.0 \cdot 10^{-11}$
vinit$0$$0$
C2out 0 C value$C_{i}$$9.0 \cdot 10^{-11}$
vinit$0$$0$
L12 1 L value$L_{se}$$1.0 \cdot 10^{-8}$
iinit$0$$0$
R13 2 R value$R_{s}$$50.0$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
R21 out R value$R_{se}$$9.0 \cdot 10^{6}$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
R3out 0 R value$R_{i}$$1.0 \cdot 10^{6}$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
V13 0 V value$0$$0$
noise$0$$0$
dc$0$$0$
dcvar$0$$0$
Parameter definitions of SLiCAP_LTD.cir.
NameSymbolicNumeric
$C_{c}$$1.0 \cdot 10^{-11}$$1.0 \cdot 10^{-11}$
$C_{i}$$9.0 \cdot 10^{-11}$$9.0 \cdot 10^{-11}$
$L_{se}$$1.0 \cdot 10^{-8}$$1.0 \cdot 10^{-8}$
$R_{i}$$1.0 \cdot 10^{6}$$1.0 \cdot 10^{6}$
$R_{s}$$50$$50.0$
$R_{se}$$9.0 \cdot 10^{6}$$9.0 \cdot 10^{6}$

Go to SLiCAP_LTD_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2024 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2024-11-11 13:00:16