"CDcompM18bulk" .lib C18.lib .source V1 .detector V_out .lgref Gm_M1_X1 C1 out 0 C value={C_ell} vinit=0 C2 2 0 C value={C_phz} vinit=0 R1 1 2 R value={R_s} noisetemp=0 noiseflow=0 dcvar=0 dcvarlot=0 V1 1 0 V value=0 noise=0 dc=0 dcvar=0 X1 0 2 out out CMOS18N W={W} L={L} ID={ID} .end
RefDes | Nodes | Refs | Model | Param | Symbolic | Numeric |
---|---|---|---|---|---|---|
C1 | out 0 | C | value | $C_{\ell}$ | $C_{\ell}$ | |
vinit | $0$ | $0$ | ||||
C2 | 2 0 | C | value | $C_{phz}$ | $C_{phz}$ | |
vinit | $0$ | $0$ | ||||
Cdb_M1_X1 | 0 out | C | value | $c_{db X1}$ | $1.8 \cdot 10^{-10} W$ | |
vinit | $0$ | $0$ | ||||
Cdg_M1_X1 | 0 2 | C | value | $c_{dg X1}$ | $4.6 \cdot 10^{-10} W$ | |
vinit | $0$ | $0$ | ||||
Cgb_M1_X1 | 2 out | C | value | $c_{gb X1}$ | $0.0008931 L W + 2.0 \cdot 10^{-12} L$ | |
vinit | $0$ | $0$ | ||||
Cgs_M1_X1 | 2 out | C | value | $c_{gs X1}$ | $0.005755 L W + 4.6 \cdot 10^{-10} W$ | |
vinit | $0$ | $0$ | ||||
Csb_M1_X1 | out out | C | value | $c_{sb X1}$ | $1.8 \cdot 10^{-10} W$ | |
vinit | $0$ | $0$ | ||||
Gb_M1_X1 | 0 out out out | g | value | $g_{b X1}$ | $\frac{0.002895 ID}{\left(\frac{ID L \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5} \left(\frac{7579.0 ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2} \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5}}{W} + 1.0\right)}{W} + 0.0001206 \left(\frac{ID L \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5} \left(\frac{7579.0 ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2} \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5}}{W} + 1.0\right)}{W}\right)^{0.5} + 5.814 \cdot 10^{-8}\right)^{0.5}}$ | |
Gm_M1_X1 | 0 out 2 out | g | value | $g_{m X1}$ | $\frac{0.006433 ID}{\left(\frac{ID L \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5} \left(\frac{7579.0 ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2} \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5}}{W} + 1.0\right)}{W} + 0.0001206 \left(\frac{ID L \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5} \left(\frac{7579.0 ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2} \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5}}{W} + 1.0\right)}{W}\right)^{0.5} + 5.814 \cdot 10^{-8}\right)^{0.5}}$ | |
Go_M1_X1 | 0 out 0 out | g | value | $g_{o X1}$ | $\frac{1.111 \cdot 10^{-8} ID}{L}$ | |
R1 | 1 2 | R | value | $R_{s}$ | $R_{s}$ | |
noisetemp | $0$ | $0$ | ||||
noiseflow | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
dcvarlot | $0$ | $0$ | ||||
V1 | 1 0 | V | value | $0$ | $0$ | |
noise | $0$ | $0$ | ||||
dc | $0$ | $0$ | ||||
dcvar | $0$ | $0$ |
Name | Symbolic | Numeric |
---|---|---|
$CGBO_{N18}$ | $1.0 \cdot 10^{-12}$ | $1.0 \cdot 10^{-12}$ |
$CGSO_{N18}$ | $4.6 \cdot 10^{-10}$ | $4.6 \cdot 10^{-10}$ |
$CJB_{0 N18}$ | $0.001$ | $0.001$ |
$C_{OX N18}$ | $\frac{\epsilon_{0} \epsilon_{SiO2}}{TOX_{N18}}$ | $0.008633$ |
$E_{CRIT N18}$ | $3.5 \cdot 10^{6}$ | $3.5 \cdot 10^{6}$ |
$I_{0 N18}$ | $2 C_{OX N18} N_{s N18} U_{T}^{2} u_{0 N18}$ | $1.439 \cdot 10^{-6}$ |
$LDS_{N18}$ | $1.8 \cdot 10^{-7}$ | $1.8 \cdot 10^{-7}$ |
$N_{s N18}$ | $1.45$ | $1.45$ |
$T$ | $300$ | $300.0$ |
$TOX_{N18}$ | $4.0 \cdot 10^{-9}$ | $4.0 \cdot 10^{-9}$ |
$\Theta_{N18}$ | $0.28$ | $0.28$ |
$U_{T}$ | $\frac{T k}{q}$ | $0.02585$ |
$VAL_{N18}$ | $9.0 \cdot 10^{7}$ | $9.0 \cdot 10^{7}$ |
$Vth_{N18}$ | $0.48$ | $0.48$ |
$c$ | $2.998 \cdot 10^{8}$ | $2.998 \cdot 10^{8}$ |
$\epsilon_{0}$ | $\frac{1}{c^{2} \mu_{0}}$ | $8.854 \cdot 10^{-12}$ |
$\epsilon_{SiO2}$ | $3.9$ | $3.9$ |
$k$ | $1.381 \cdot 10^{-23}$ | $1.381 \cdot 10^{-23}$ |
$\mu_{0}$ | $4.0 \cdot 10^{-7} \pi$ | $1.257 \cdot 10^{-6}$ |
$q$ | $1.602 \cdot 10^{-19}$ | $1.602 \cdot 10^{-19}$ |
$u_{0 N18}$ | $0.086$ | $0.086$ |
$IC_{CRIT X1}$ | $\frac{0.0625}{N_{s N18}^{2} U_{T}^{2} \left(\Theta_{N18} + \frac{1}{E_{CRIT N18} L}\right)^{2}}$ | $\frac{567.3}{\left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}$ |
$IC_{X1}$ | $IC_{i X1} \left(1 + \frac{0.5 IC_{i X1}}{IC_{CRIT X1}}\right)^{0.5}$ | $\frac{1.72 \cdot 10^{7} ID L \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5}}{W}$ |
$IC_{i X1}$ | $\frac{ID L}{I_{0 N18} W}$ | $\frac{6.95 \cdot 10^{5} ID L}{W}$ |
$V_{GS X1}$ | $2 N_{s N18} U_{T} \log{\left(e^{IC_{X1}^{0.5}} - 1 \right)} + Vth_{N18}$ | $0.07497 \log{\left(e^{470.3 \sqrt{\pi} \sqrt{\frac{ID L \sqrt{\frac{651597504584192789 \pi ID L \left(\frac{7}{25} + \frac{1}{3500000 L}\right)^{2}}{262031250000000 W} + 1}}{W}}} - 1 \right)} + 0.48$ |
$c_{db X1}$ | $CJB_{0 N18} LDS_{N18} W$ | $1.8 \cdot 10^{-10} W$ |
$c_{dg X1}$ | $CGSO_{N18} W$ | $4.6 \cdot 10^{-10} W$ |
$c_{gb X1}$ | $2 CGBO_{N18} L + \frac{0.3333 C_{OX N18} L W \left(N_{s N18} - 1\right)}{N_{s N18}}$ | $0.0008931 L W + 2.0 \cdot 10^{-12} L$ |
$c_{gs X1}$ | $CGSO_{N18} W + 0.6667 C_{OX N18} L W$ | $0.005755 L W + 4.6 \cdot 10^{-10} W$ |
$c_{iss X1}$ | $c_{dg X1} + c_{gb X1} + c_{gs X1}$ | $0.006648 L W + 2.0 \cdot 10^{-12} L + 9.2 \cdot 10^{-10} W$ |
$c_{sb X1}$ | $CJB_{0 N18} LDS_{N18} W$ | $1.8 \cdot 10^{-10} W$ |
$f_{T X1}$ | $\frac{0.5 g_{m X1}}{\pi c_{iss X1}}$ | $\frac{0.001024 ID}{\left(0.006648 L W + 2.0 \cdot 10^{-12} L + 9.2 \cdot 10^{-10} W\right) \left(\frac{ID L \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5} \left(\frac{7579.0 ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2} \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5}}{W} + 1.0\right)}{W} + 0.0001206 \left(\frac{ID L \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5} \left(\frac{7579.0 ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2} \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5}}{W} + 1.0\right)}{W}\right)^{0.5} + 5.814 \cdot 10^{-8}\right)^{0.5}}$ |
$g_{b X1}$ | $g_{m X1} \left(N_{s N18} - 1\right)$ | $\frac{0.002895 ID}{\left(\frac{ID L \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5} \left(\frac{7579.0 ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2} \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5}}{W} + 1.0\right)}{W} + 0.0001206 \left(\frac{ID L \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5} \left(\frac{7579.0 ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2} \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5}}{W} + 1.0\right)}{W}\right)^{0.5} + 5.814 \cdot 10^{-8}\right)^{0.5}}$ |
$g_{m X1}$ | $\frac{ID}{N_{s N18} U_{T} \left(IC_{X1} \left(1 + \frac{0.25 IC_{X1}}{IC_{CRIT X1}}\right) + 0.5 \left(IC_{X1} \left(1 + \frac{0.25 IC_{X1}}{IC_{CRIT X1}}\right)\right)^{0.5} + 1\right)^{0.5}}$ | $\frac{0.006433 ID}{\left(\frac{ID L \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5} \left(\frac{7579.0 ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2} \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5}}{W} + 1.0\right)}{W} + 0.0001206 \left(\frac{ID L \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5} \left(\frac{7579.0 ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2} \left(\frac{ID L \left(1 + \frac{1.02 \cdot 10^{-6}}{L}\right)^{2}}{W} + 0.001633\right)^{0.5}}{W} + 1.0\right)}{W}\right)^{0.5} + 5.814 \cdot 10^{-8}\right)^{0.5}}$ |
$g_{o X1}$ | $\frac{ID}{L VAL_{N18}}$ | $\frac{1.111 \cdot 10^{-8} ID}{L}$ |
Name |
---|
$C_{\ell}$ |
$L$ |
$C_{phz}$ |
$W$ |
$R_{s}$ |
$ID$ |
Go to CDcompM18bulk_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2024 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2024-10-20 16:56:20