DC variance analysis

Dcvar analysis results

DC solution of the network

$$\left[\begin{matrix}Ii_{F1 X1}\\I_{Vo X1}\\Io_{N1 X1}\\V_{3}\\V_{3 X1}\\V_{4}\\V_{5 X1}\\V_{out}\end{matrix}\right]=\left[\begin{matrix}I_{b}\\0\\- I_{b}\\- I_{b} R_{B1}\\- I_{b} R_{B1}\\- I_{b} R_{B1}\\0\\I_{b} \left(- R_{B1} + R_{B2}\right)\end{matrix}\right]$$

Detector-referred variance

$$\sigma_{out}^2=I_{b}^{2} R_{B1}^{2} \sigma_{R}^{2} + I_{b}^{2} R_{B2}^{2} \sigma_{R}^{2} + I_{b}^{2} \sigma_{ib}^{2} \left(R_{B1} - R_{B2}\right)^{2} + i_{off}^{2} \left(R_{B1} + R_{B2}\right)^{2} + v_{off}^{2}\, \mathrm{\left[ V^2 \right]}$$

Contributions of individual component variances

Variance of source: I_dcvar_R3
Source variance:$I_{b}^{2} \sigma_{R}^{2}$$\,\mathrm{\left[ A^2 \right]}$
Detector-referred:$I_{b}^{2} R_{B1}^{2} \sigma_{R}^{2}$$\,\mathrm{\left[ V^2 \right]}$
Variance of source: I_dcvar_R4
Source variance:$I_{b}^{2} \sigma_{R}^{2}$$\,\mathrm{\left[ A^2 \right]}$
Detector-referred:$I_{b}^{2} R_{B2}^{2} \sigma_{R}^{2}$$\,\mathrm{\left[ V^2 \right]}$
Variance of source: Ib_X1
Source variance:$I_{b}^{2} \sigma_{ib}^{2}$$\,\mathrm{\left[ A^2 \right]}$
Detector-referred:$I_{b}^{2} \sigma_{ib}^{2} \left(R_{B1} - R_{B2}\right)^{2}$$\,\mathrm{\left[ V^2 \right]}$
Variance of source: Io_X1
Source variance:$i_{off}^{2}$$\,\mathrm{\left[ A^2 \right]}$
Detector-referred:$i_{off}^{2} \left(R_{B1} + R_{B2}\right)^{2}$$\,\mathrm{\left[ V^2 \right]}$
Variance of source: Vo_X1
Source variance:$v_{off}^{2}$$\,\mathrm{\left[ V^2 \right]}$
Detector-referred:$v_{off}^{2}$$\,\mathrm{\left[ V^2 \right]}$

Go to VampBias_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2024 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2024-10-20 16:54:18