Circuit data

Schematic diagram of CScapNoiseV.kicad_sch

Circuit diagram of CScapNoiseV.
Figure: CScapNoiseV.svg
Circuit diagram of CScapNoiseV.

Netlist: CScapNoiseV.cir

"CScapNoiseV"
.source V1
.detector V_out
.lib C18.lib
.param C_s=0.1p W=66u L=180n ID=7.44m IG=0
C1 1 2 C value={C_s} vinit=0
V1 1 0 V value=0 noise=0 dc=0 dcvar=0
X1 2 0 out NM18_noise ID={ID} IG={IG} W={W} L={L}
.end
Expanded netlist of CScapNoiseV.cir.
RefDesNodesRefsModelParamSymbolicNumeric
C11 2 C value$C_{s}$$1.0 \cdot 10^{-13}$
vinit$0$$0$
F1_X12 0 10_X1 0 F value$\frac{0.5 s}{\pi f_{T X1}}$$4.774 \cdot 10^{-12} s$
H1_X12 out 1_X1 10_X1 H value$\frac{1}{g_{m X1}}$$34.17$
I1_X10 1_X1 I value$0$$0$
noise$\frac{4 T k \left(\left(\frac{f_{\ell X1}}{f}\right)^{AF_{N18}} + 1\right)}{R_{N X1}}$$2.447 \cdot 10^{-16} \left(\frac{1}{f}\right)^{0.85} + 4.623 \cdot 10^{-22}$
dc$0$$0$
dcvar$0$$0$
I2_X12 0 I value$0$$0$
noise$2 IG q$$0$
dc$0$$0$
dcvar$0$$0$
V11 0 V value$0$$0$
noise$0$$0$
dc$0$$0$
dcvar$0$$0$
Parameter definitions of CScapNoiseV.cir.
NameSymbolicNumeric
$AF_{N18}$$0.85$$0.85$
$CGBO_{N18}$$1.0 \cdot 10^{-12}$$1.0 \cdot 10^{-12}$
$CGSO_{N18}$$4.6 \cdot 10^{-10}$$4.6 \cdot 10^{-10}$
$CJB_{0 N18}$$0.001$$0.001$
$C_{OX N18}$$\frac{\epsilon_{0} \epsilon_{SiO2}}{TOX_{N18}}$$0.008633$
$C_{s}$$1.0 \cdot 10^{-13}$$1.0 \cdot 10^{-13}$
$E_{CRIT N18}$$3.5 \cdot 10^{6}$$3.5 \cdot 10^{6}$
$ID$$0.00744$$0.00744$
$IG$$0$$0$
$I_{0 N18}$$2 C_{OX N18} N_{s N18} U_{T}^{2} u_{0 N18}$$1.439 \cdot 10^{-6}$
$KF_{N18}$$3.0 \cdot 10^{-25}$$3.0 \cdot 10^{-25}$
$L$$1.8 \cdot 10^{-7}$$1.8 \cdot 10^{-7}$
$LDS_{N18}$$1.8 \cdot 10^{-7}$$1.8 \cdot 10^{-7}$
$N_{s N18}$$1.45$$1.45$
$T$$300$$300.0$
$TOX_{N18}$$4.0 \cdot 10^{-9}$$4.0 \cdot 10^{-9}$
$\Theta_{N18}$$0.28$$0.28$
$U_{T}$$\frac{T k}{q}$$0.02585$
$W$$6.6 \cdot 10^{-5}$$6.6 \cdot 10^{-5}$
$c$$2.998 \cdot 10^{8}$$2.998 \cdot 10^{8}$
$\epsilon_{0}$$\frac{1}{c^{2} \mu_{0}}$$8.854 \cdot 10^{-12}$
$\epsilon_{SiO2}$$3.9$$3.9$
$k$$1.381 \cdot 10^{-23}$$1.381 \cdot 10^{-23}$
$\mu_{0}$$4.0 \cdot 10^{-7} \pi$$1.257 \cdot 10^{-6}$
$q$$1.602 \cdot 10^{-19}$$1.602 \cdot 10^{-19}$
$u_{0 N18}$$0.086$$0.086$
$IC_{CRIT X1}$$\frac{0.0625}{N_{s N18}^{2} U_{T}^{2} \left(\Theta_{N18} + \frac{1}{E_{CRIT N18} L}\right)^{2}}$$12.76$
$IC_{X1}$$IC_{i X1} \left(1 + \frac{0.5 IC_{i X1}}{IC_{CRIT X1}}\right)^{0.5}$$17.57$
$IC_{i X1}$$\frac{ID L}{I_{0 N18} W}$$14.1$
$R_{N X1}$$\frac{IC_{X1} + 1}{N_{s N18} g_{m X1} \left(0.6667 IC_{X1} + 0.5\right)}$$35.84$
$c_{db X1}$$CJB_{0 N18} LDS_{N18} W$$1.188 \cdot 10^{-14}$
$c_{dg X1}$$CGSO_{N18} W$$3.036 \cdot 10^{-14}$
$c_{gb X1}$$2 CGBO_{N18} L + \frac{0.3333 C_{OX N18} L W \left(N_{s N18} - 1\right)}{N_{s N18}}$$1.061 \cdot 10^{-14}$
$c_{gs X1}$$CGSO_{N18} W + 0.6667 C_{OX N18} L W$$9.873 \cdot 10^{-14}$
$c_{iss X1}$$c_{dg X1} + c_{gb X1} + c_{gs X1}$$1.397 \cdot 10^{-13}$
$f_{T X1}$$\frac{0.5 g_{m X1}}{\pi c_{iss X1}}$$3.334 \cdot 10^{10}$
$f_{\ell X1}$$\frac{0.25 KF_{N18} R_{N X1} g_{m X1}^{2}}{C_{OX N18} L T W k}$$5.417 \cdot 10^{6}$
$g_{m X1}$$\frac{ID}{N_{s N18} U_{T} \left(IC_{X1} \left(1 + \frac{IC_{X1}}{IC_{CRIT X1}}\right) + 0.5 \left(IC_{X1} \left(1 + \frac{IC_{X1}}{IC_{CRIT X1}}\right)\right)^{0.5} + 1\right)^{0.5}}$$0.02926$

The inversion coefficient $IC$ equals: 17.57

The critical inversion coefficient $IC_{CRIT}$ equals: 12.76

The transconductance $g_m$ equals: 0.02926

Source referred noise

The spectrum of the source-referred voltage noise [V/rt(Hz)] is: 1.761e-9

The plot below shows the source-referred noise spectrum from 100MHz to 100GHz; as expected, it does not depend on the frequency.

Go to CScapNoiseV_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2024 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2024-10-20 16:54:47