Found the nonzero DC loop gain.
The DC loop gain equals:
\begin{equation} L_{DC}=\frac{A_{0} \left(- 5.0 \cdot 10^{-14} R_{o} - 1.0 \cdot 10^{-10}\right)}{2.5 \cdot 10^{-17} R_{o}^{2} + 1.0 \cdot 10^{-13} R_{o} + 1.0 \cdot 10^{-10}} \end{equation}The loop gain-poles product is found as:
\begin{equation} LP=- \frac{G_{B} \left(- 5.0 \cdot 10^{-14} R_{o} - 1.0 \cdot 10^{-10}\right)}{2.029 \cdot 10^{-13} C_{c} R_{o}^{2} + 8.037 \cdot 10^{-10} C_{c} R_{o} + 7.958 \cdot 10^{-7} C_{c} + 4.058 \cdot 10^{-13} C_{d} R_{o}^{2} + 1.607 \cdot 10^{-9} C_{d} R_{o} + 1.592 \cdot 10^{-6} C_{d} + 2.029 \cdot 10^{-24} R_{o}^{2} + 8.037 \cdot 10^{-21} R_{o} + 7.958 \cdot 10^{-18}} \end{equation}The order of the LP product is: 2
The required bandwidth = 500.0kHz
With this value, the show stopper value of the gain-bandwidth product $G_B$ is:
\begin{equation} GB_{min}=7.854 \cdot 10^{5} \end{equation}Go to transimpedance_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2024 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2024-10-20 16:53:53