Let us find show-stopper values for $R_a$, $S_v$, and $S_i$ for the case in which the noise factor $NF$ equals 2 (3dB).
The noise factor NF [-] is obtained as:
\begin{equation} NF=0.001583 R_{a} + 3.621 \cdot 10^{22} S_{i} \left(0.001583 R_{a} + 1\right)^{2} + 1.006 \cdot 10^{17} S_{v} + 1.0 \end{equation}The show stopper value $R_{amax}$ for $R_a$ with $NF=2$, $S_v=0$ and $S_i=0$ is obained as:
\begin{equation} R_{a max}=631.6 \end{equation}The show stopper value for $S_v$ with $NF=2$ and $S_i=0$ can be obained as a function of $R_a$ (setting $R_a$ to zero would be meaningless):
\begin{equation} S_{v max}=9.941 \cdot 10^{-18} - 1.574 \cdot 10^{-20} R_{a} \end{equation}The show stopper value for $S_i$ with $NF=2$ and $S_v=0$ can be obained as a function of $R_a$: (setting $R_a$ to zero would be meaningless):
\begin{equation} S_{i max}=\frac{2.761 \cdot 10^{-23} - 4.372 \cdot 10^{-26} R_{a}}{\left(0.001583 R_{a} + 1.0\right)^{2}} \end{equation}Go to VampNoise_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2024 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2024-10-20 16:59:00