The gain of the circuit is obtained as:
\begin{equation} \frac{V_{\ell}}{V_{s}}=\frac{A_{r} g_{m} \left(R_{a} + R_{b}\right)}{A_{r} R_{b} g_{m} + R_{a} R_{b} g_{m} + R_{a} + R_{b}} \end{equation}The asymptotic-gain $A_{\infty_G1}$ is found as:
\begin{equation} A_{oo G1}=\frac{A_{r} \left(R_{a} + R_{b}\right)}{R_{b} \left(A_{r} + R_{a}\right)} \end{equation}The loop gain $L_{G1}$ is found as:
\begin{equation} L_{G1}=\frac{R_{b} g_{m} \left(- A_{r} - R_{a}\right)}{R_{a} + R_{b}} \end{equation}The servo function $S_{G1}$ is found as:
\begin{equation} S_{G1}=- \frac{R_{b} g_{m} \left(- A_{r} - R_{a}\right)}{A_{r} R_{b} g_{m} + R_{a} R_{b} g_{m} + R_{a} + R_{b}} \end{equation}The direct transfer $\rho_{G1}$ is found as:
\begin{equation} \rho_{G1}=0 \end{equation}The gain $A_f$ calculated from $A_{\infty_{G1}}$, $S_{G1}$ and $\rho_{G1}$ is obtained as:
\begin{equation} A_{f}=\frac{A_{r} g_{m} \left(R_{a} + R_{b}\right)}{A_{r} R_{b} g_{m} + R_{a} R_{b} g_{m} + R_{a} + R_{b}} \end{equation}Go to cfbVamp_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2024 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2024-10-20 16:58:39