Asymptotic-gain model H1 ref

The gain of the circuit is obtained as:

\begin{equation} \frac{V_{\ell}}{V_{s}}=\frac{A_{r} g_{m} \left(R_{a} + R_{b}\right)}{A_{r} R_{b} g_{m} + R_{a} R_{b} g_{m} + R_{a} + R_{b}} \end{equation}

The asymptotic-gain $A_{\infty_{H1}}$ is found as:

\begin{equation} A_{oo H1}=\frac{R_{a} + R_{b}}{R_{b}} \end{equation}

The loop gain $L_{H1}$ is found as:

\begin{equation} L_{H1}=- \frac{A_{r} R_{b} g_{m}}{R_{a} R_{b} g_{m} + R_{a} + R_{b}} \end{equation}

The servo function $S_{H1}$ is found as:

\begin{equation} S_{H1}=\frac{A_{r} R_{b} g_{m}}{A_{r} R_{b} g_{m} + R_{a} R_{b} g_{m} + R_{a} + R_{b}} \end{equation}

The direct transfer $\rho_{H1}$ is found as:

\begin{equation} \rho_{H1}=0 \end{equation}

The gain $A_f$ calculated from $A_{\infty_G1}$, $S_{G1}$ and $\rho_{G1}$ is obtained as:

\begin{equation} A_{f}=\frac{A_{r} g_{m} \left(R_{a} + R_{b}\right)}{A_{r} R_{b} g_{m} + R_{a} R_{b} g_{m} + R_{a} + R_{b}} \end{equation}

Go to cfbVamp_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2024 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2024-10-20 16:58:39