Design of a LF-HF Active Antenna in CMOS18 technology

Radio astronomy antenna for space applications 10kHz ... 30MHz

DualStageMirrorResComp1BondWires.asc

DualStageMirrorRes_Check.asc

DualStageMirrorRes_BiasedEndStage.asc

DualStageMirrorRes_Complete.asc

DualStageMirrorRes_MoreComplete

Antenna length: max 0.5m E-field antenna-referred noise: 10kHz : 100n .00KHz 100 10n 5n $\frac{1}{m\sqrt{Hz}}$ 30MHz : 5n Output 1dB compression level: 0dBm in 500hn Antenna gain (-3dB: 10kHz-30MHz) 0dB

Features ESD discharge protected Low-power 1.8V CMOS technology

anton@montagne.nl https://www.analog-electronics.eu

Amplifier concept

SLICAP

Signal path design of the antenna amplifier

- SLiCAP model C_iss of the first stage minimized for more effective phantom-zero compensation, I DS increased for low noise floor. This is possible because there was a significant
- design margin for noise. Output phantom zero with bondwire + trace inductance
- Input complex phantom zeros with bond wire and series resistor - Current mirror with high cut-off frequency and noise
- governed by feedback resistors
- Bandwidth limitaion with phantom zeros is not implemented
- Out-of-band interference has not been specified - More elaborated model of the antenna is available but not implemented.

From SLiCAP to LTspice

First step biasing:

- LT spice equivalent of signal path
- Aside from R3, only ideal voltage and current sources added
- Check for:
- Small-signal dynamic response
- Noise performance
- Drive capability - Weak nonlinearity

LTspice

Second step biasing:

- Model-based biasing of the output stage (Book Figure 15.32) - Use a low reference current (smaller than quiescent current of end stage
- Short R7 with C5 (should be voltage source = 0 Ohm)
- Check for distortion and make C5 as small as possible - Check for:
- Small-signal dynamic response (no significant change)
- Noise performance (no significant change)
- Drive capability (no significant change)
- Weak nonlinearity (C5)

SLICAP

Budgets for the (finite) output impedance of the current sources M6, M7, as well as budgets for C5 and R7 can be obtained with SLICAP.

LTspice

Third step biasing:

- Implementation of the current source
- Adjustment of current input stage (noise performance)
- Minimization of noise addition current source and improvement PSRR often an external capacitor is required for a low-noise reference (C6). - Check for:
- Small-signal dynamic response (no significant change)
- Noise performance (may require adjustements if budgets were to tight)
 Drive capability (no significant change)
- Weak nonlinearity (may be increased if M10 is driven into the linear region in that case the output stage can be driven on a tap of R7, C5)

SLICAP

Budgets for the (finite) output impedance of the current source (R//C) M10 can be obtained with SLiCAP.

LTspice

Fourth step biasing:

- Implementation of the output voltage source level shift
- Implemented with a current through a resistor (M12, R12) Take a small current compared to the quiescent current of the output stage
- Check for:
- Small-signal dynamic response (no significant change)
- Noise performance (may require adjustements if budgets were to tight)
- Drive capability (no significant change)
- Weak nonlinearity (no significant change)

ToDo

- Influence of temperature and device tolerances
- on all relevant performance parameters Adding parasitics after lay-out
- Final optimization