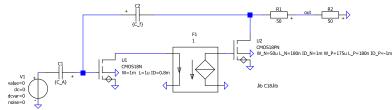
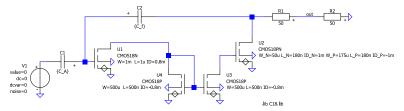

# Design of a LF-HF Active Antenna in CMOS18 technology

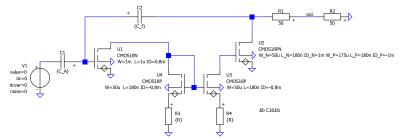




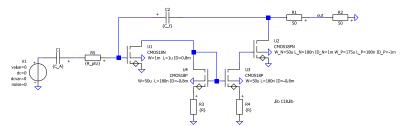

## Design of a dual stage controller



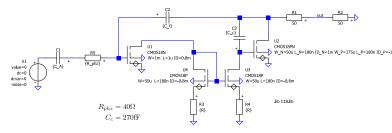




## DualStage.py




## DualStageMirror.py




## DualStageMirrorRes.py



## DualStageMirrorResComp1.py



#### DualStageMirrorResComp2.py



| Output 1dB compression level:<br>0dBm in 500hm<br>Antenna gain (-3dB: 10kHz-30MHz)                                                                       | rotected<br>CMOS technology                                              |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                          |                                                                          |  |  |  |  |
| <i>C</i> .                                                                                                                                               |                                                                          |  |  |  |  |
| $L = -\frac{2g_{m_1}g_{m_2}R_c \frac{c_f}{C_f + C_s + c_{iss_1}}}{2g_{m_1}g_{m_2}R_c \frac{c_f}{C_f + C_s + c_{iss_1}}}$                                 | PZ analysis                                                              |  |  |  |  |
| $L = -\frac{2g_{m_1}g_{m_2}R_c \frac{c_f}{C_f + C_s + c_{iss_1}}}{sc_{iss_2} \left(1 + s2R_c \frac{c_f(C_s + c_{iss_1})}{C_f + C_s + c_{iss_1}}\right)}$ | PZ analysis results                                                      |  |  |  |  |
|                                                                                                                                                          | Gain type: gain                                                          |  |  |  |  |
| $q_{m_1}q_{m_2}$                                                                                                                                         | DC gain = -1.000                                                         |  |  |  |  |
| $LP_2 = \frac{g_{m_1}g_{m_2}}{c_{iss_2}(C_s + c_{iss_1})}$                                                                                               |                                                                          |  |  |  |  |
|                                                                                                                                                          | pole Re [Hz] Im [Hz] Mag [Hz] Q<br>p1 -3.513e+8 -1.207e+9 1.257e+9 1.789 |  |  |  |  |
| $g_{m_1} = 15.36 \text{m}$                                                                                                                               | p2 -3.513e+8 1.207e+9 1.257e+9 1.789                                     |  |  |  |  |
| $g_{m_2} = 23.62 \mathrm{m}$                                                                                                                             | zero Re [Hz] Im [Hz] Mag [Hz] Q                                          |  |  |  |  |
| 0                                                                                                                                                        | z1 2.176e+9 2.176e+9                                                     |  |  |  |  |
| $C_s = 5 \mathrm{p}$                                                                                                                                     | z <sub>2</sub> -3.978e+9 3.978e+9                                        |  |  |  |  |
| $c_{iss_1} = 7.568 \mathrm{p}$                                                                                                                           | PZ analysis results                                                      |  |  |  |  |
| $c_{iss_2} = 0.4386 \text{p}$                                                                                                                            | Gain type: loopgain                                                      |  |  |  |  |
| $B_f = \frac{1}{2\pi} \sqrt{LP_2} = 1.29 \text{GHz}$                                                                                                     | DC gain = oo                                                             |  |  |  |  |
| · 2/                                                                                                                                                     | pole Re [Hz] Im [Hz] Mag [Hz] Q                                          |  |  |  |  |
| $p_1 = 0, \ p_2 = -\frac{C_f + C_s + c_{iss_1}}{4\pi B_o C_f (C_s + c_{iss_1})} = -763 \text{MHz}$                                                       | p1 0 0                                                                   |  |  |  |  |
| $4\pi R_c C_f \left( C_s + c_{iss_1} \right)$                                                                                                            | p <sub>2</sub> -1.038e+9 1.038e+9                                        |  |  |  |  |
| ours of solos (abs) increased as a result of solo eslibili                                                                                               | zero Re [Hz] Im [Hz] Mag [Hz] Q                                          |  |  |  |  |
| sum of poles (abs) increased as a result of pole-splitti<br>in the second stage (first stage is shorted)                                                 | 5 21 3.313ers 3.313ers                                                   |  |  |  |  |
| in the second stage (iffst stage is shorted)                                                                                                             | Z <sub>2</sub> 4.979e+10 4.979e+10                                       |  |  |  |  |

#### **Current mirror requirements**

- Low noise:
  Transconductance low compared to input stage
  Low cut-off frequency (flicker noise)

- No dominant pole in loop gain
  Current mirror introduces a pole at half the cut-off frequency
  High cut-off frequency may conflict with low flicker noise

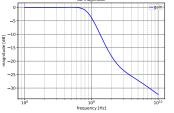
|   |                | PZ analysis |           |          |        |  |  |
|---|----------------|-------------|-----------|----------|--------|--|--|
| F | Z ana          | alysis resu | ults      |          |        |  |  |
| G | ain ty         | be: gain    |           |          |        |  |  |
| D | C gain = -     | 0.9934      |           |          |        |  |  |
|   | pole           | Re [Hz]     | Im [Hz]   | Mag [Hz] | Q      |  |  |
|   | P1             | -3.829e+7   | -5.721e+8 | 5.734e+8 | 7.488  |  |  |
|   | p <sub>2</sub> | -3.829e+7   | 5.721e+8  | 5.734e+8 | 7.488  |  |  |
|   | P3             | -1.399e+9   |           | 1.399e+9 |        |  |  |
|   | zero           | Re [Hz]     | Im [Hz]   | Mag [Hz] | Q      |  |  |
|   | z1             | 1.113e+9    |           | 1.113e+9 |        |  |  |
|   | Z2             | -8.226e+8   | -1.190e+9 | 1.447e+9 | 0.8793 |  |  |
|   | z3             | -8.226e+8   | 1.190e+9  | 1.447e+9 | 0.8793 |  |  |

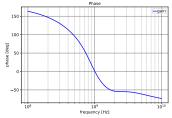
#### PZ analysis results

Gain type: loopgain

| pole           | Re [Hz]   | lm [Hz] | Mag [Hz]  | Ş | MFM bandwidth     |  |
|----------------|-----------|---------|-----------|---|-------------------|--|
| P1             | -6.324e+6 |         | 6.324e+6  |   | B1 = 963MHz       |  |
| p <sub>2</sub> | -4.850e+8 |         | 4.850e+8  |   | $B_{2} = 684 MHz$ |  |
| p <sub>3</sub> | -9.838e+8 |         | 9.838e+8  |   | $B_3 = 772 MHz$   |  |
| zero           | Re [Hz]   | Im [Hz] | Mag [Hz]  | Q |                   |  |
| z1             | 1.106e+10 |         | 1.106e+10 |   |                   |  |
| 75             | 4 979e+18 |         | 4 979e+10 |   |                   |  |

#### Orthogonolize


Separate the function (inverting unity-gain current amplifier) from its noise performance (low transconductance)


Fix the transadmittance with negative feedback

| PZ analysis    |              |           |           |        |  |  |
|----------------|--------------|-----------|-----------|--------|--|--|
| PZ ana         | alysis resul | lts       |           |        |  |  |
| Gain ty        | pe: gain     |           |           |        |  |  |
| DC gain = -    | 0.9930       |           |           |        |  |  |
| pole           | Re [Hz]      | Im [Hz]   | Mag [Hz]  | Q      |  |  |
| P1             | -7.126e+7    | -9.490e+8 | 9.517e+8  | 6.677  |  |  |
| p <sub>2</sub> | -7.126e+7    | 9.490e+8  | 9.517e+8  | 6.677  |  |  |
| P3             | -2.320e+9    |           | 2.320e+9  |        |  |  |
| p4             | -3.258e+10   |           | 3.258e+10 |        |  |  |
| zero           | Re [Hz]      | Im [Hz]   | Mag [Hz]  | Q      |  |  |
| z <sub>1</sub> | 1.674e+9     |           | 1.674e+9  |        |  |  |
| Z2             | -1.533e+9    | -1.996e+9 | 2.516e+9  | 0.8209 |  |  |
| Z3             | -1.533e+9    | 1.996e+9  | 2.516e+9  | 0.8209 |  |  |
| z4             | -3.261e+10   |           | 3.261e+10 |        |  |  |

#### Frequency compensation

Second order system Influence of third pole cannot be ignored Compensation with phantom zero at the source introduces a fourth pole (resistor breaks loop of capacitors) Combination of pole-splitting and phantom-zero compensation



