The method

Derive stages from basic amplifier stage through

application of error-reduction techniques
Understand basic amplification with single transistor

- The biased CS stage

- Behavior of the intrinsic CS stage (ideal drive and load conditions)
* Static nonlinear behavior and design of voltage and current drive capability

* Dynamic nonlinear behavior
* Dynamic small-signal behavior
* Noise behavior

- Behavior of the CS stage when connected between a source and a load

* Small-signal dynamic behavior

* Noise behavior and optimization of the noise behavior
Understand in which way the performance of a stage can be changed
- Change of operating point (design parameters: | and V)

- Change of geometry (design parameters: W and L)

through application of error reduction techniques

- Application of balancing techniques: differential pair and push-pull stage

- Application of direct negative feedback: the CD and the CG stage

- Application of indirect negative feedback: the current mirror and the voltage mirror

CS basic amplifier stage

The biased CS stage
Output port biased for performance
- Input stage: noise
- Output stage: drive capability
- Intermediate stages:
* Drive capability
* Contribution to:
- LP product
- Differential error to gain ratio
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Behavior of the intrinsic CS stage

Static nonlinear behavior

- All curves pass through the origin

- Current sink capability exceeds current source
capability (latter one limited by bias current)
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Bias sources at input port depend on

device characteristics

- Can be determined by SPICE

- Biasing of particular device at simulation
temperature correct for all resistive port
terminations
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- Modeling of nonlinear effects is shown
- Other static transfers are not shown:

* Input resistance is infinite
* DC current gain is infinite
* DC current to voltage transfer is
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Dynamic nonlinear behavior
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Stages for CMOS Controller Design

- Different source and sink drive
capability results in different slew rate
for rising and falling edges

- Right half-plane zero depend on trans-
conductance and thus on the current

Dynamic small-signal behavior
Transmission-1 matrix parameters can
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be calculated from small-signal
equivalent circuit
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- All transfers have zero at: § = Zm
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Noise behavior
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- Transformation into equivalent input sources:
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gate-induced noise.

Device scaling

MOS Scaling parameters
- W width

- L length

- k fingers

- m devices

Relevant at high frequencies

- Effective width: W, = 2kmW source terminal always shared
* Current-drive capa{)m
* Optimization of noise performance
* Optimization of device matching
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Behavior of the CS stage between source and load

Small-signal dynamic behavior when driven/terminated from/with

infinite parallel RC
source intrinsic CS stage load
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Qualitative description of the dynamic behavior (transimpedance gain)
oo 1. If C,=0, the circuit has two poles; associated with the two RC networks.
2. If C, is small with respect to the other capacitances, C, will not affect the
_05 product of the poles
- The sum of the poles will be increased (Miller effect): one pole is closer
[ to the origin, thus the other moves towards a higher frequency. This
e e TR o 5 R0 is called pole-splitting (due to capacitive feedback)
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- A positive zero is found at: s =

Pole-splitting can be used for frequency compensation.

Undesired pole-splitting may be a cause for bandwidth reduction in a
feedback amplifier. This is the case if the high frequency pole is split
out of the dominant group.

Optimization of the noise performance of a CS stage for a resistive source and for high frequencies (no 1/f noise)
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- Inversion coefficient close
critical inversion

- find optimum width and
best possible noise figure
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the 1/f noise cannot be
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through simulation.

- Lower 1/f corner frequency
* Increase both W and L
* Cut-off frequency will

increasing Width
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Balanced stages

Anti-series connected stages: differential pair

Concept 3- or 4-terminal networks

Small-signal equivalent
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Behavioral modifications
Topology

- 4-terminal

- Behavior approximates that of
natural two-port

Biasing

- Common-mode current sources only
Large signal static behavior
- Even terms cancel

- Limiting current characteristic
Small-signal dynamic

- Transmission coefficients A and D equal

those of constituting elements
- Coefficient B twice as large

T
— 1_diff_out/lss:lss=100nA [-]
— Idiff_out/ss:lss=100uA [-]
— Ldiff_out/lss:lss=" qu[J /

- Coefficient C half

[‘(/ d

— Ldiff_out/lss:lss= souA[]

0.0

Y
Lege =_L( ﬂm % |:|v

Ve

Noise Behavior

-10

~08 -06 -04 -02 00 02 04 06

Vdiff_in [V]

Complementary parallel stage:

Topology

- Can be used as 4-terminal with
split-signal output, but not a natural
two-port

Biasing

- Common-mode voltage sources only

Large signal static behavior

- Even terms cancel

- Exapanding current characteristic

- Imperfect balancing PMOS and NMOS

Small-signal dynamic

- Transmission coefficients A and D equal
those of consituting elements

- Coefficient B half

- Coefficient C twice as large

Noise Behavior

- Voltage noise spectrum half that of
constituting elements

- Current noise spectrum twice as large
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0.8 - Voltage noise spectrum twice as large
- Current noise spectrum half that of
constituting elements

push-pull stage

Complementary stages
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Basic nullor implementations

Local feedback stages

Assume biased stages

NMOS CS stage  PMOS CS stage

Complementary parallel CS stage
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anti-series CS stages

Nullor

Local feedback stages
E gUt

- Feedback with a basic

amplifier stage as controller
- 3 terminal controller:

The CD stage or source follower

Non-energic feedback unity-gain

voltage amplifier

* CS stage
* Complementary-parallel stage
- Behavioral modifications through application of
negative feedback:

- 4-terminal controller:
* Anti-series stage

* Nonenergic: equivalent input noise sources equal

those of its CS stage controller
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* Parallel voltage sensing: -

decreases output impedance

* Series voltage comparison:
increases input impedance
- Feedback not effective if sensing or comparison not
possible:
* Output shorted
* Input current-driven
- Back-gate effect reduces loop gain
- Poles may be complex with capacitive load

The CG stage
Non-energic feedback unity-gain
current amplifier
- Behavioral modifications through
application of negative feedback:
* Nonenergic: equivalent input noise
sources equal those of CS stage
* Series current sensing:
increases output impedance
* Parallel current comparison:
decreases input impedance
- Feedback not effective if sensing or
comparison not possible:
* Output left open
* Input voltage-driven
- Back-gate effect increases loop gain
- In practice a large loop gain if driven from and terminated with a CS stage

Cascode stages
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CS-CG or CE-CB cascade = cascode stage

- Elimination of pole-splitting (shorted CS or CE stage)
- Approximate unilateral behavior

- High output impedance

- Non dominant pole of CG or CB stage at f;

- Almost ideal CS or CE stage
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Balanced cascode stage

- Best possible single-stage nullor
implementation

approximation
- Approximate unilateral behavior
- High output impedance

- Best possible single-stage natural two-port

- Non dominant pole of balanced CG or CB

stage at fy
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