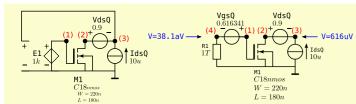
The method

Derive stages from basic amplifier stage through application of error-reduction techniques

- Understand basic amplification with single transistor
- The biased CS stage
- Behavior of the intrinsic CS stage (ideal drive and load conditions) * Static nonlinear behavior and design of voltage and current drive capability
- * Dynamic nonlinear behavior
- * Dynamic small-signal behavior
- * Noise behavior
- Behavior of the CS stage when connected between a source and a load * Small-signal dynamic behavior
- * Noise behavior and optimization of the noise behavior
- Understand in which way the performance of a stage can be changed
- Change of operating point (design parameters: I and V)
- Change of geometry (design parameters: W and L) through application of error reduction techniques
- Application of balancing techniques: differential pair and push-pull stage
- Application of direct negative feedback: the CD and the CG stage
 Application of indirect negative feedback: the current mirror and the voltage mirror

CS basic amplifier stage


The biased CS stage

- Output port biased for performance Input stage: noise
- Output stage: drive capability

Intermediate stages:

- * Drive capability * Contribution to
- LP product

- Differential error to gain ratio

(Vo) [uA]

015 02

 \bigcap_{10u}^{1ds0} Vo

- Vo [V]

0.05 0.10

Vi [V]

L = 180r

Vo(Vi) characterist

Vi [V]

Behavior of the intrinsic CS stage Static nonlinear behavior

- All curves pass through the origin - Current sink capability exceeds current source capability (latter one limited by bias current)

lo(Vi) cha

-25 -0.20 -0.15 -0.10 -0.05 0.00

- Modeling of nonlinear effects is shown Other static transfers are not shown: * Input resistance is infinite * DC current gain is infinite * DC current to voltage transfer is infinite

- Vo [V]

10

-0.5

-1.0 L

 $=4kTR_s$

 $S_{i_n} = 4kTn\Gamma g_m \left(1 + \frac{f_\ell}{f}\right)$

 $S_{v_{R_s}}$

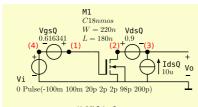
B =1 $D = -\frac{sc_{iss}}{a_{m}} = -\frac{s}{2\pi f_T}$

 $S_{i_{n_G}} = 2qI_G$

Vo(lo) characteristic

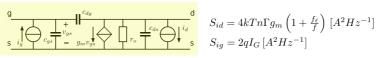
Bias sources at input port depend on

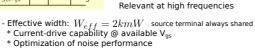
- Biasing of particular device at simulation


temperature correct for all resistive port

device characteristics

terminations


Can be determined by SPICE


Noise behavior

Transformation into equivalent input sources:

Device scaling

gate-induced noise.

 $B = -\frac{1}{g_m}$

 $D = -\frac{s}{s}$

- The noise source id D is called

- Different source and sink drive

for rising and falling edges

capability results in different slew rate

Right half-plane zero depend on trans-

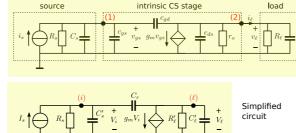
conductance and thus on the current

Transmission-1 matrix parameters can

- All transfers have zero at: $s = \frac{g_m}{c}$

Usually above the cut off frequency

Cut-off frequency: $\omega_T = \frac{g_m}{c_{qs}+c_{qd}}$


÷

Dynamic small-signal behavior

be calculated from small-signal

equivalent circuit

* Optimization of device matching Behavior of the CS stage between source and load Small-signal dynamic behavior when driven/terminated from/with parallel RC

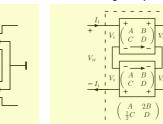

Qualitative description of the dynamic behavior (transimpedance gain) 1. If Cr=0, the circuit has two poles; associated with the two RC networks. 2. If C_r is small with respect to the other capacitances, C_r will not affect the product of the poles

The sum of the poles will be increased (Miller effect): one pole is closer to the origin, thus the other moves towards a higher frequency. This is called pole-splitting (due to capacitive feedback)

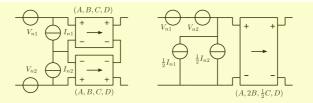
- A positive zero is found at: $s = \frac{g_m}{a}$

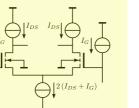
Pole-splitting can be used for frequency compensation. Undesired pole-splitting may be a cause for bandwidth reduction in a feedback amplifier. This is the case if the high frequency pole is split out of the dominant group.

Optimization of the noise performance of a CS stage for a resistive source and for high frequencies (no 1/f noise)



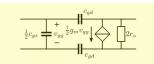



Stages for CMOS Controller Design


Anti-series connected stages: differential pair

Concept 3- or 4-terminal networks Small-signal equivalent

- Behavior approximates that of natural two-port Biasing Common-mode current sources only


Topology

- 4-termina

Behavioral modifications

Large signal static behavior - Even terms cancel - Limiting current characteristic

Small-signal dynamic Transmission coefficients A and D equal those of constituting elements Coefficient B twice as large Coefficient C half

Noise Behavior

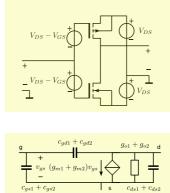
Voltage noise spectrum twice as large - Current noise spectrum half that of constituting elements

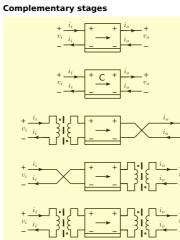
Complementary parallel stage: push-pull stage Topology

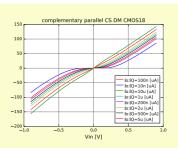
- Can be used as 4-terminal with split-signal output, but not a natural two-port

/diff_in [V

Biasing

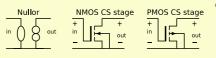

- Common-mode voltage sources only
- Large signal static behavior - Even terms cancel

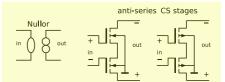

- Exapanding current characteristic Imperfect balancing PMOS and NMOS


- Small-signal dynamic - Transmission coefficients A and D equal
- those of consituting element - Coefficient B half
- Coefficient C twice as large

Noise Behavior Voltage noise spectrum half that of constituting elements

Current noise spectrum twice as large




source

Local feedback stages

Basic nullor implementations

The CD stage or source follower Non-energic feedback unity-gain

voltage amplifier

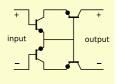
- Behavioral modifications through application of negative feedback: * Nonenergic: equivalent input noise sources equal
- those of its CS stage controller
- * Parallel voltage sensing: decreases output impedance
- * Series voltage comparison:
- increases input impedance
- Feedback not effective if sensing or comparison not possible: * Output shorted
- * Input current-driven
- Back-gate effect reduces loop gain
- Poles may be complex with capacitive load

The CG stage

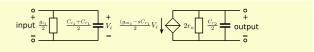
Non-energic feedback unity-gain current amplifier

- Behavioral modifications through
- application of negative feedback: * Nonenergic: equivalent input noise
- sources equal those of CS stage
- * Series current sensing:
- increases output impedance * Parallel current comparison:
- decreases input impedance
- Feedback not effective if sensing or
- comparison not possible
- * Output left open
- * Input voltage-driven
- Back-gate effect increases loop gain
- In practice a large loop gain if driven from and terminated with a CS stage

Cascode stages


input

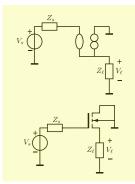
- CS-CG or CE-CB cascade = cascode stage - Elimination of pole-splitting (shorted CS or CE stage)
- Approximate unilateral behavior
- High output impedance - Non dominant pole of CG or CB stage at f_T
- Almost ideal CS or CE stage

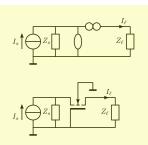


output

Balanced cascode stage

- Best possible single-stage nullor implementation
- Best possible single-stage natural two-port approximation
- Approximate unilateral behavior High output impedance
- Non dominant pole of balanced CG or CB stage at $f_{\scriptscriptstyle T}$


Assume biased stages


Complementary parallel CS stage

+ in	UĘ,	J⊱	+ out

Local feedback stages

- Feedback with a basic amplifier stage as controller 3 terminal controller:
- * CS stage
- * Complementary-parallel stage 4-terminal controller
- * Anti-series stage

