Information processing

Signal processing in noisy environments

noise

>

sensor(s)

noise

>

electronic signal processing system

acquired signal(s)
process under control

Random signal modeling

>

actuator(s)

Signal
- a physical quantity that contains meaningful data
noise Data
- properties or details of a signal that represent the
information

Noise
- a physical quantity whose data is meaningless

Information
- the meaning of the data

excitation(s)

Signal processing
- Perform operations on a signal. Extract or
modify the information contained in the signal.

A signal is a signal, it is neither random nor
deterministic, but we can model it either way.
G.P. Box:

All models are wrong, but some are useful.
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Stationary process

Random variable Statistical properties do not change with time.
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Random variables

Ensemble Average
First-order expectation

Moment
Second-order expectation

Mean power per unit of bandwidth u=0
as a function of frequency.

Noise measurement:
Resistor: 10k
Voltage amplification 500x

Variance
Squared standard deviation
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Time Average: DC value

#(t) = zpc = limy_,o0 7 fOT x(t)dt

Autocorrelation

Mean Square Value:

a(t)?

Mean square AC value:

= limyoo & [} ()2t 225 = limpyo & [ (2(t) — 2po)’dt TF

The joint power between a signal and its time-shifted copy tells us something about the dependency between signal values.

ro(7) = g 1 fy or(t)er(t + 7)dt

Fourier Transform

Joseph Fourier Norbert Wiener
21-03-1768, France

16-05-1830

Su(w) = F{rs(r)}
ra(r) = F 1 {S(w)}

Wiener-Khinchin theorem

26-11-1894, Columbia, Missouri, US
18-03-1964, Stockholm, Sweden

7(0) = limg o0 & [ 27 (t)%dt = x(1)?

Parseval's theorem

Marc-Antoine Parseval
17-04-1755, des Chenes, France
16-08-1836

Aleksandr Khinchin
19-07-1894, Kondrovo, Russian Empire
18-11-1959, Moscow, Russian SFSR

Stationary process:

Noise in electronic circuits

Thermal noise R
Noise in conductors caused by thermal
(Brownian) motion (Brown 1828).
Experimetally detected by

Johnson (1928) and explained by
Nyquist (1928).

Excess noise

Autocorrelation function and 1 (t)2 = foo S(f)df
spectral density form a Fourier pair 0
Shot noise
Noise current associated with a T v T .
- N hA i
noise-free Sy, = AKTR [VZ/HZ] DC current through a junction. I, n

resistor
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= 2qI;[A%/Hz]

Switched capacitor noise

- Thermal noise current v

- Opening the switch fixes -
charge

- Periodic switching yields
noisy resistor

Noise parameters

vn = \/ TR e = /'

B magnitude characteristic

Equivalent noise bandwidth

Bandwidth of a brickwall filter with a

First-order

pass-band gain equal to the maximum
magnitude of the system transfer that

low-pass:

would produce the same output noise

_
B, = $B_3n

power as the system:
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Noise temperature

Apparent temperature of a noise

source with available noise power P

over a bandwidth B: T =2
n = kB

Signal-to-noise ratio

Ratio of (weighted) signal power

and (weighted) noise power:

Noise figure

SNR = Psignal

Proise

~ SNR at the input of a system

Tor
frequency [Hz]

Available power
Maximum power
that can be delivered

Z .
=
, * _ v
by a source: 5

source  load

SNRus = 101ogy, (’“—)

Proise

Measure for deterioration of the Ia
signal-to-noise ratio by a system:

Dynamic range

Ratio of maximum signal power and
the noise power in the absence of a signal:

Effective number of bits
In mixed signal (analog-digital systems)

Log (base 2) of the ratio of the maximum number of counts
and the standard deviation in counts in the absence of a signal:

Two-ports

" SNR at the output of a system

— Psmaz

P min

Fyp = 101logyo I

Dyp = 10log, (M)

Prmin

ENOB,, = log, 27”

Other definitions
are also in use

Two-port: amplifier model used at an early stage of the design

- Two ports
- Two port variables (V, )
- Six representation methods (Chapter 18)

Vinia Vion Noisy two-ports
— 3
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] — — |Tnos - Two dependent variables
- - ol il - - Six representation methods
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Can be translated into each
Vaic Vaoo other:
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= - - S - - - Noise performance
C D modeled correctly for
aribitrary port termination
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Transmission-1 matrix two-port representation
+ ,Il + + ,If’ +
Anti-causal representation Vi - v,
Output port quantities as independent variables - —- -

Input port quantities as dependent variables

Measurement of input-referred noise sources
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Shorted input: Voltage noise

N . 1 noise-free N
Noise current resulting from G=% I conductor -
fluctuations in conduction %; }‘EXAs
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Open input: Current noise

Amplifier noise design

Equivalent-input noise description is convenient at
early stages of the design.
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Thévenin / Norton transformation
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Equivalent two-port representations

without knowledge of the amplifier circuit.

Noise figure
Source-referred defenition:
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Budgets for equivalent input noise sources can be determined

Ratio of total (weighted) source-referred noise and the total (weighted)

noise associated with the
signal source:

F = do Sonsa WP
o SonsW(HIPdf
2 Squared magnitude of a weighting
(W)l

of the observer as a function of
frequency

Determination of source-referred noise

Blakesley voltage shift
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function that models the sensitivity
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Determination of output
(detector-referred) noise:
- Summ all noise contributions at detector

Determination of input
(source-referred) noise

- Divide result by source-to-load transfer

Equivalent-input voltage noise +

: Vi,
Zse -+ -+

Thou shalt not insert impedances in series or in parallel with the signal path

AR

Series Noise associated
impedance with series
impedance

e

amplifier
input
port

Signal source*
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S aliil Noise associated with Noise associated with Parallel Equivalent-input
clircelacplttance source admittance parallel admittance admittance current noise
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Narrow-band applications
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influence of noise sources further

Vi

/R

signal source

SV = AKTR + Sy, + 51, (R2 + (@L,)?)

+ PN
Ve C $TI

(noisy) amplifier

! coupling

signal source H n H
| capacitor !

Sy, = 4KTR, + Sy, + 51, (Rf + (WL -

(noisy) amplifier

#))

Single-loop passive feedback configurations and their equivalent noise models

Voltage amplifier

Veq
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Transadmittance

7
Zy 4 -
JAR
+ |/
Vs T
= Ieg I
Z, Z

Transimpedance

Current amplifier
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