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Estimation of poles and zeros in networks without feedback
Poles
A system
1. In which energy is stored
2. That is not in its quiescent state
3. To which no excitations have been applied
tends to a quiescent state in which the energy is distributed 
over, dissipated in, and/or radiated by the system
The poles of the system are the complex eigenfrequencies that 
describe this process; their number is equal to the number of 
independent energy storage elements in the system.
Zeros
The zeros are the complex frequencies at which the transfer, from
a specific input to a specific output of the system, equals zero.  

Physical meaning

Mathematical description
Lumped, stationary, linear, dynamic systems
Linear
1. Property of homogeneity
2. Property of additivity (superposition)
Dynamic
1. Responses at some time instant depend on excitations at the same
    time instant and on previous (causal) or future (non-causal, predictive)
    values of excitations

Linear differential equations
Single input and single output system
The sum of a number of derivatives of the response equals the sum of 
a number of derivatives of the excitation.
- excitation x(t)
- response y(t)
- lumped: ordinary differential equations
- stationary: fixed (time-independent) coefficients
 

Poles
The solution of the homogeneous
differential equation: 
Since exponential functions retain their shape under integration and differentiation
this solution (the response) consists of a number of exponential functions.

Laplace Transform
Laplace: any signal x(t) can be written as an infinite sum of complex exponentials, 
each element of which has its own complex amplitude X(s) and complex frequency s. 

Transfer function
By using this signal modeling technique, the differentail equation converts into 
an algebraic equation. A transfer function can be defined that relates the complex
amplitudes of the complex exponentials of the response to those of the excitation: 

Characteristic equation (polynomial)
The poles are the solutions of the characteristic equation:
 
 
 
 
Companion matrix
The companion matrix can be used 
to describe the characteristic 
equation as a set of first-order 
equations:

Poles
Solutions for s of the denominator of H(s)
Zeros
Solutions for s of the numerator of H(s)

Eigenvalues
The eigenvalues of the companion matrix are the roots of the characteristic 
polynomial. 

Network theory

Graph theory
1. A graph consists of branches and nodes
2. A connected graph has at least one path among the branches that connects all 
    the nodes
3. A sub-grapth is a subset of branches with their corresponding nodes
4. A closed path of branches is called a loop
5. A collection of branches that isolates a sub-graph when removed, is called a cut set
6. A tree is a collection of branches that connects all the nodes but has no loops
Incidence matrix A
Topology information about branches and nodes; rows: nodes, columns: branches
Element matrix B
Matrix with element node-branch relations
Column vector with independent variables V
Nodal voltages or branch currents
Column vector with dependent variables I
Nodal currents and branch voltages (independent sources)
Network matrix equation
- passive network:

red: loop across 1,2,3
blue: loop across 1,4

red: cut set isolating sub network 1,2,3,4
blue: cut set isolating sub network 2,3

blue: tree of the network
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Sign convention: Positive current
flows through branche from node 
with positive voltage to node with 
negative voltage

I
Two-terminal element relations
in voltage controlled form:

NODAL ANALYSIS

Sum of currents
flowing from node
equals zero:
charge conservation

Nodal analysis
Voltage-controlled elements only
Admittance matrix Y:

General form of the admittance matrix Y:

Sum of admittances connected between node k and j

Sum of independent currents flowing into node k

Sum of admittances connected to node k

Voltage at node k

Modified nodal analysis
Voltage-controlled and current-controlled elements
- Add a row with the branch relation
- Add a column with the unknown current

+

-

Transfer function
Transfer from independent variable to dependent variable

Minor matrix: equals M after leaving out row k and column j.

Poles
Solutions for s of
Zeros
Solutions for s of

The time-constant matrix
Basis for intuitive determination of poles in systems without feedback
General form of the MNA matrix, written as first-order equations of s

Characteristic equation:

Generalized eigenvalue problem

Poles and eigenvalues of the time-constant matrix:

Number of poles and the dimension of T
- The number of poles equals the number of independent state variables, which is the
  sum of the number of independent capacitor voltages and the independent inductor 
  currents
- The dimension of T as defined above, is equal to the dimension of M, which is the
  number of nodes minus one; this is usually much larger than the number of
  independent state variables.
- Since the number of eigenvalues of a (square) matrix equals its number of rows or
  columns we may find a lot of poles at infinity, and reduction of the dimension of the
  time-constant matrix to the number of state variables is desired (numerical stability).
- Unfortunately there is no straightforward method to do this, but we can reduce its
  dimension of the time-constant matrix to the sum of the number of inductors and 
  capacitors.  
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p ports with capacitors

q ports with inductors

p ports with current sources

q ports with voltage sources

Resistive 
p+q port
network

Structure and meaning of the time-constant matrix

Multi-port resistive 
network
- Capacitors and inductors 
  connected the ports of a
  multi-port resistive network
- Energy stored on the 
  element connected to a
  port is dissipated in
  the resistive network
  or interacts with energy 
  stored in elements 
  connected to other ports
- Such interactions 
  complicate the estimation
  of the poles
- If there are no interactions
  only the diagonal elements of
  the time-constant matrix
  have a non-zero value
- The trace of the matrix then
  equals the sum of its
  eigenvalues
- Poles are found from the non-
  zero values of the diagonal 
  elements
- The time-constant matrix
  can only be used for networks 
  that have a DC solution 

Estimation of poles and zeros in networks without feedback

Procedure for finding poles from the time-constant matrix

Number of poles
- The number of poles equals the sum of the number of independent capacitor
  voltages and independent inductor currents
  - The number of independent capacitor voltages equals the number of 
    capacitors minus the number of independent loops of capacitors or capacitors
    and voltage sources
    - The number of independent loops of capacitors or capacitors and voltage 
      sources equals the number of capacitors and/or voltage sources that must be 
      removed from the network to break all the loops
  - The number of independent inductor currents equals the number of inductors
    minus the number of independent cut sets of inductors and inductors and current
    sources
    - The number of independent cut sets of inductors and inductors and current 
       sources equals the number of inductors and/or current sources that need to be 
       replaced in the network to obtain a connected graph, after all inductors and 
       current sources that are part of such a cut set have been removed
Number of poles at zero frequency
- The number of poles at zero frequency equals the number of independent cut 
  sets of capacitors and capacitors and current sources plus the number of 
  independent loops of inductors and inductors and voltage sources 

+
-

Network with 7 capacitors
1. How many independent loops
    of capacitors and voltage sources?
2. How many poles?
3. How many independent cut sets
    of capacitors or of capacitors and
    current sources?
4. How many poles at s=0?

Relation between poles and zeros and Bode plots

Accurate: calculate eigenvalues
1. Be sure the network has a DC solution:
    - No cut sets of capacitors and/or current 
      sources:
      If not, insert resistors with a large 
      resistance in parallel with the branches 
      of such independent cut sets
 
 
    - No loops of inductors and/or voltage 
      sources: 
      If not, insert resistors with a low 
      resistance in series with the branches 
      of such independent loops
2. Determine the resistance matrix through
    network inspection
3. Determine the time-constant matrix by
    multiplying the resistance matrix with the
    diagonal matrix with reactive port elements
4. Calculate the eigenvalues of the time-
    constant matrix   

Estimation: ignore interaction
1. Be sure the network has a DC solution:
    - No cut sets of capacitors and/or 
      current sources:
      If not, insert resistors with a large
      resistance in parallel with the 
      branches of such independent cut sets
 
 
    - No loops of inductors and/or voltage 
      sources: 
      If not, insert resistors with a low 
      resistance in series with the branches
      of such independent loops
2. Determine the resistance of each 
    port of the multi-port resistive network
3. For each port determine the time 
    constant that follows from its port 
    resistance and its reactive element 
4. The largest time-constant is the one of 
    the dominant pole, denote it and:
    a. Short the port of this largest time 
        constant in cases in which a 
        capacitor was connected to it, or 
        leave it open in cases in which an
        inductor was connected to it.
    b. Determine the port resistances of 
        the modified network, find the next 
        dominant time constant, etc. ... 

Note:
If a dominant time constant is found at a port at which a 
capacitor is connected, then for frequencies above the 
frequency associated with the dominant time constant,
the capacitor can be considered to short the port.
If a dominant time constant is found at a port at which an 
inductor is connected, then for frequencies above the 
frequency associated with the dominant time constant,
the inductor can be considered to be disconnected from
the port.

Network probe circuit

 
 

+

-

R1

R2 R3 C2

C1

+

-
R-matrix C-matrix

Multi-port resistive networks and port time constants

Time-constant matrix and eigenvalues

Ignored interaction: product of the poles is correct, sum of the poles too small, interaction
increases the absolute value of their sum. 

Procedure for finding zeros
Zero transfer at complex frequency
- Short in parallel with the signal path
- Open circuit in series with the signal path
- Multiple transfer paths that cancel each other at some complex frequency

input output
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Zero transfer at zero frequency
- DC short in parallel with the signal path
- DC open circuit in series with the signal path
- Multiple transfer paths that cancel each other at DC

The y-axis in the complex plane
corresponds with the frequency
axis in the Bode plots.

Relation between poles and zeros and the unit-impulse response

The poles of the system are the
coefficients of t in the exponentials
of the unit-impulse response.
 
 

dominant pole non-dominant pole

A stable system has all poles in the 
negative half of the complex plane.


