Structured analog design

- Hierarchically structured design process
- * Solid theoretical base
- * Focus on operating mechanisms and desired behavioral modifications
- * Technology-independent
- * Detailed knowledge of operating mechanisms and design techniques
- Ranking, classification and orthogonalization of:
- * Performance aspects
- * Design strategies / methods / techniques
- Possible showstoppers become evident at an early stage of the design process
- Circuit design based on design rules and techniques
- Derivation of design equations using computer-based symbolic analysis (SLiCAP):
- * Models for performance aspects of interest
- * Model complexity levl increases during design process
- * Allows separate design of signal path and biasing
- Solid basis for design automation

SLICAP

Symbolic Linear Circuit Analysis Program

- Tool for deriving/solving circuit design equations
- * Design of noise performance
- * Design of bandwidth and frequency response
- * Design of
- DC temperature stability and offset (statistical)

Transportation

Distribution

Combination

Level change

Memorization

Modification

Detection

stimation

Conversion

Basic signal processing functions

Bring the information

Store the information

Modify the data (not

Notice the occurence

Quantify the amount

the information)

of specific data

of specific data

(time-shift)

Structured design of electronic information processing systems

Traditional analog design

- Heuristic design approach
- * Experienced-based rules of thumb
- * Focus on topological modifications
- * Technology-dependent
- * Detailed knowledge of circuit topologies isolated from their environment and application
- Experience-based ranking of:
- * Performance aspects
- * Topologies
- * Rules of thumb
- Experience-based awareness of showstoppers
- Evolutionary, analysis-based circuit design
- Simulation with complete device-level models at all stages of the design does not allow separation of signal path and biasing
- Basis for design optimization

Structured Electronic Design @ TUDelft

EE3C11:

- Introduction to structured electronic design
- Design of application-specific amplifiers with OpAmps
- Device physics

EE4C09:

- Transistor-level design of application-specific amplifiers
- Device modeling

Basic electronic signal processing functions Transportation Bring the electrical signal to

to a different location			a different location
Provide multiple observers with the same information		Distribution	Provide multiple loads with the same electrical signal
Provide an observer with information from multiple sources		Combination	Provide a load with the sum of different electrical signals
Change the level of the signal	-	Amplification Attenuation	Increase the available power Decrease the available power

Impedance matching Optimize the power transfer

Nonlinear operation

Memorization

Functions

Selection

Domains voltage / curren

Architecture information processing system

Signal

- physical quantity that contains meaningful data
- Data
- properties or details of the signal that represent the information
- Nois
- physical quantity whose data is meaningless
- Information
- the meaning of the data
- Signal processing
- performance of operations on the signal, while preserving the information contained in it
 - Associated basic electronic signal

processing objects

Channel wires / traces / cables / EM fields

Distributer wires / traces / cables / distributers / EM fields

Combiner wires / traces / cables / combiners / EM fields

Amplifier Attenuator Impedance transformer transformers / matching networks Memory

	Domain	Selector	reference
ıt	- voltage - current - frequency - time - space	- Comparator / Limiter - Filter (LP, HP, BP, BS) - Switch - n.e.	- DC ref. (V / I) - Oscillator - Timer - n.e.
	Element with nonlin	ear V-I relation	

Change the physical signal representation

Transducers, sensors and actuators are not strictly considered as electronic information processing funcions

Processing of electrical signals in noisy environments

Information handling capacity

Shannon (1948)

The number of information processing errors can be kept arbitarily low if the amount of information transported over a channel is equal or less than its channel capacity C:

Basic functions

The functional decomposition of any electronic signal processing system requires a limited number of basic signal processing functions only.

Physical and technological limitations

The performance of real-world information processing systems will be limited as a result of

- the physical limitation of noise, speed and power - the imperfections of the physical mechanisms that are used for the implementation of the basic functions: technological limitations

Error reduction techniques

The quality of information processing, or the performance-to-cost ratio of an information processing system can be improved through the application of a limited number of so-called 'error reduction techniques'.

Error reduction techniques with data preservation

- **Compensation techniques**
- Additive / multiplicative
- Automatic / non-automatic
- anti-series and complementary series connection
- anti-parallel and complementary parallel connection
- cascade connection (pole-zero compensation)
- error-feedforward
- negative feedback
- auto-zero

Error reduction through data modification

Coding - Change of data Modulation - Change frequency range / spectral contents Digitization (sampling + quantization) - Use discrete-time and discrete-value representation

Figure of merit

Measure for performance-to-cost ratio Helps in makig design decisions

