Structured Amplifier Design in CMOS technology

A systems engineering approach to the design of custom-specific amplifiers in CMOS technology

Table with design techniques and their effect on performance aspects, cost factors, environment, reliability and safety

		Dr capa	rive ability	Noise	Performa oise Port Isolation				ance aspects Transfer quality							st fa	actors Mechanical resources		env	Enviro From environment		nment To environment			Reliability			Safety		
Design te	echniques	Static V-I drive capability	V-I slew rate	SNR	PSRR	CMRR	Gain and port impedances	Accuracy	Offset	Weak nonlinearity	Small-signal bandwidth	Frequency response	Frequency stability	lemperature stability	Quiescent dissipation Power efficiency		Dimensions	Mass	Temperature	Mechnical conditions	Electrical conditions	Temperature rise	Emitted noise	Waste	MTTF	MTBF	MTTR	User	Environment	Product
Device	Geometry Operating current Operating voltage																													
Feedback	Direct negative feedback Indirect (model-based) negative feedback Direct positive feedback Indirect (model-based) positive feedback Increase DC or mid-band loop gain Increase loop gain-poles product Decrease error-gain ratio of the loop gain																													
Error feedforwar	Direct d Indirect (model-based)																													
Balancing	Anti-series connection Complementary-parallel connection																													
Frequency compensat	Phantom-zero compensation Pole-splitting (feedback) Pole-splitting PZ canceling Resistive broadbanding Bandwidth reduction																													
Impedance	correction Brute-force port termination Zobel correction																													

End terms

After following this course you are able to:

- Indicate strong positive interactions and strong negative interactions between: the design techniques in the rows and the performance aspects, cost factors, and environmental conditions in the columns.
- 2. For the strong positive interactions:
 - Describe how the design technique improves the performance aspect, reduces the costs, or reduces the susceptibility to environmental influences.
 - Give examples that elucidate the above.
- 3. For the strong negative interactions:
 - Describe how the design technique adversely affects the performance aspect, or increases the costs or the susceptibility to environmental influences.
 - Give examples that elucidate the above.

The above concerns the blue items only.