# **Structured Electronics Design**

A systems engineering approach to the design of electronic circuits

#### Solidly based on

- Systems Engineering
- Device physics Signal processing
- Network theory
- Control theory

## History

1980: Ernst H. Nordholt: Design of High-Performance Negative-Feedback Amplifiers

1989: Catena Micro Electronics Delft, Product Partners Delft, TU Delft, IMS Stuttgart: Analog Electronics Design Course, COMETT program EU.

2003: C.J.M Verhoeven, A. van Staveren, G.L.E. Monna, M.H.L. Kouwenhoven, E. Yildiz Structured Electronic Design

2018: A.J.M. Montagne: Structured Electronics Desian

### Benefits

- Straightforward top-down design
- Specification driven
- Early identification of design risks
- Solid basis for analog design education
- Solid basis for algorithmic design automation

### Characteristics

- Hierarchically structured design process
- Identical process flow at each level - Circuit design put in the perspective of
- information processing
- Clear relation between application, requirement specification and design
- Clear distinction between theoretical concepts and their technology-specific implementation
- Takes concepts and their technology-specific implementation, rather than known circuit topologies as starting point for the design.
- Puts circuit analysis in the perspective of design synthesis.
- Provides clear goals for circuit optimization.

## Design tools SLiCAP

Symbolic Linear Circuit Analysis Program A python application for deriving and solving design equations of electronic circuits.

Symbolic and numeric determination of design equations, show-stopper values, and

design budgets for:

- DC variance and temperature dependency of component values
- Noise contributions of transistors, resistors. current and voltage sources
- Bandwidth / settling time - Frequency response

Includes MOS (EKV) model and BIT

(Gummel-Poon) model

Symbolic and numeric pole-zero analysis Root-locus plots

#### Design education tools

Currently under development at the TU Delft.

A computer-based learning system for analog circuit design

## Hierarchical design process

Identical structure at each level

#### Input:

Initial specification of object to be designed At highest level: Application description

## Output:

Design data Initial specification of next level objects At lowest level: Final specification of object(s)

## **Requirement specification**

- Functions

- Performance
- Environment - Costs

#### **Figure Of Merit** - time

 $FOM = \frac{Weighted product of performance measures}{Weighted product of performance measures}$ - space - matter Weighted product of cost factors

- energy

## Put the design of electronic circuits in the perspective of information processing

Electronic information processing systems can be constructed from a limited number of:

### Basic references and processing functions / objects

| Function                          | Materialization                         | Object                         |
|-----------------------------------|-----------------------------------------|--------------------------------|
| Reference in V-I domain           |                                         | Voltage of current source      |
| Reference in frequency domain     | Physical                                | Harmonic oscillator            |
| Reference in time domain          | operating<br>principle in<br>technology | Timer                          |
| Impedance matching                |                                         | Transformer / matching network |
| Increase of available signal powe | r                                       | Amplifier                      |
| Selection in V-I domain           |                                         | Comparator / limiter           |
| Selection in frequency domain     | · ·                                     | Filter                         |
| Selection in time domain          |                                         | Switch                         |
| Memorize                          |                                         | Memory                         |

## Materialization: create objects that perform functions

| The amount of information that can be processed by an object is limited |                                                                                                                   |  |  |  |  |  |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| A model should provide<br>an answer to a question.                      | Evaluate the application of design techniques (see below) for improvement of the performance-cost ratio.          |  |  |  |  |  |  |
| but not simpler!                                                        | Evaluate interaction between performance aspects and<br>between performance aspects ans cost factors.             |  |  |  |  |  |  |
| Models should be as<br>simple as possible,                              | Evaluate performance limitations and cost factor limitations.                                                     |  |  |  |  |  |  |
| All models are wrong,<br>but some are useful.<br>A. Einstein:           | Model the physical (nonideal) behavior.                                                                           |  |  |  |  |  |  |
|                                                                         | Find an operating mechanism that can be used for the materialization of this function in an available technology. |  |  |  |  |  |  |
| G.P. Box:                                                               | Model the desired functional (ideal) behavior.                                                                    |  |  |  |  |  |  |

#### mount of information that can be processed by an object is limited

Channel capacity Shannon (1948)

## **Fundamental limitations**

The information processing capacity [bits/s] of physical systems is limited

- addition of noise
- power limitation
- speed (bandwidth, rate of change) limitation

## **Design techniques**

A collection of techniques that can be applied to - improve performance - reduce the costs

## Types of design techniques

- optimization of physical implementation - scaling of dimensions
- changing of operating point
- modification of physical implementation
- changing of device
- modification of functional decomposition - application of design techniques
- Examples isolation - auto-zeroing - compensation - modulation balancing - sampling - feedback - quantization





#### Orthogonalize design techniques - performance requirements

|                                                                       | Per                                      | Cost fa                                     | actors                                                                                                        | Environ                                | Environment             |                                                       |                                       |       |
|-----------------------------------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|-------------------------------------------------------|---------------------------------------|-------|
| Structured                                                            | Drive Noise<br>capability                | Port<br>Isolation                           | Transfer<br>quality                                                                                           | Electrical<br>resources                | Mechanical<br>resources | From<br>environment                                   | To<br>environment                     | bilit |
| Amplifier Design<br>CMOS technology                                   | alic V-l drive capability -<br>sker rake | m<br>en<br>in and port impedances<br>or acy | tet<br>ak nonlinearity<br>ali-signal bandwidth<br>iquarcy response<br>opercy stability<br>repeature stability | lescent dis sipation<br>wer efficiency | mendiores<br>65         | rperature<br>Idmical conditions<br>Idmical conditions | mperature rise<br>Vited noise<br>Iste | 11    |
| Design techniques                                                     | 8 3 8                                    | ¥ 8 6 2                                     |                                                                                                               | 8 8                                    | N N                     | ž ž š                                                 | Err Vo                                | TM TM |
| Geometry Device Operating current Operating voltage                   |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| Direct negative feedback                                              |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| Indirect (model-based) negative feedback                              |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| Indirect (model-based) positive feedback                              |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| Feedback Increase DC or mid-band loop gain                            |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| Increase loop gain-poles product                                      |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| Decrease differential-error-gain ratio of the loop gain               |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| Error Direct<br>feedforward Indirect (model-based)                    |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| Balancing Anti-series connection<br>Complementary-parallel connection |                                          |                                             |                                                                                                               | esi                                    | gn                      |                                                       |                                       |       |
| Phantom-zero compensation                                             |                                          |                                             | lec                                                                                                           | nni                                    | que                     | S                                                     |                                       |       |
| Pole-splitting (feedback)<br>Frequency                                |                                          |                                             | Effe                                                                                                          | ctiv                                   | ene                     | ss                                                    |                                       |       |
| compensation Pos-spirting P2 carceing<br>Besistive Innathantion       |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| Bandwidth reduction                                                   |                                          |                                             |                                                                                                               | Mat                                    | rix                     |                                                       |                                       |       |
| Impedance correction Brute-force port termination<br>Zobel correction |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| Impedance transformation At the source                                |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| At the load                                                           |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| Modulation Frequency shift                                            |                                          |                                             |                                                                                                               |                                        | ++ 9                    | strong p                                              | ositive                               |       |
| Bandwidh - Power                                                      |                                          |                                             |                                                                                                               |                                        | +                       | positive                                              |                                       |       |
| Time multiplex                                                        |                                          |                                             |                                                                                                               |                                        | 0                       | neutral                                               |                                       |       |
| Time-space multiplex                                                  |                                          |                                             |                                                                                                               |                                        |                         | negative                                              |                                       |       |
| Bertical                                                              |                                          |                                             |                                                                                                               |                                        | 9                       | strong n                                              | egative                               |       |
| Filtering Mechanical                                                  |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |
| Thermal                                                               |                                          |                                             |                                                                                                               |                                        |                         |                                                       |                                       |       |

## Seminar Program Structured Electronics Design

Structured Design of Negative Feedback Amplifiers

- 1. Introduction
- 2. Specification and design of amplifier type
- 3. Specification and design of drive capability and noise performance
- 4. Specification and design of accuracy, bandwidth and weak nonlinearity
- 5. Specification and design of small-signal dynamic response
- 6. SLiCAP a design tool that supports Structured Electronics Design
- 7. Example design in PCA technology: Audio Hearing Loop
- 8. Structured Electronics Design in CMOS technology
- 9. Structured Electronics Design in CMOS technology
- 10. Example design in CMOS technology: CMOS active receiver antenna (0.1-30 MHz) Conclusions: Analog Design education and automation



high costs

 $C = B \log_2 \frac{P+N}{N} \left[\frac{\text{bit}}{s}\right]$ 

**Technological limitations** 

Imperfect, incomplete, or unavailable

materialization of the desired function

- insufficient performance

or cost factor that cannot be realized under the Show given constaints. stoppe

## Identify at earliest possible stage

Impact on the predictability of the design process increases each stage

# No propagation of design risks

- Design risks identified at a hierarchical level must be resolved at that level
- No design loops

Only take design decisions if necessary

## **Design the design process**

#### Requirements

- Identical structure at each hierarchical level
- Show stoppers appear at the earliest possible stage
- No risk propagation, no design loops

## Orthogonalization

- Create degrees of freedom for realizing functions and their
- characteristic performance aspects.
- Separate them in:
- parameters - frequency range
- time
- location

## Sequencing of activities

The sequence of the design activitie should be such that

- Show stoppers appear at the earliest possible stage:
- Materialization of a function in the desired technology is not available
- The required performance-cost ratio cannot be achieved within the required constraints:
- There is no design technique capable of
- improving a performance aspect to a sufficient quality level - reducing a cost factor to an acceptable level
- Design decisions taken at one stage need not to be reconsidered at a later stage

## **IC Amplifier Design Process**

Stepwise approach to the design of negative feedback amplifiers and bias sources



Function, performance, costs and environment Amplifier type Output stage and over-all biasing concept Input stage Number of stages Frequency compensation Complete biasing concept Distortion Bias sources

## **Example Designs**

## TU Delft BSc course EE3C11



Specification, design, build, and test of an audio hearing loop system in PCA technology

## **TU Delft MSc course**



Specification, design, and verification by simulation of an active antenna for receivers with a frequency range of 0.1 - 30 MHz..



data

Safety