"Circuit data"

Circuit data

Netlist: mosEKVplotsP.cir

mosEKVplots
* SLiCAP netlist file
X1 d g s 0 CMOS18P W={W} L={L} ID={I_D}
.param W=220n L=180n
.end
Table: Element data of expanded netlist 'mosEKVplots'
RefDesNodesRefsModelParamSymbolicNumeric
Cdb_M1_X1d 0 C value$c_{db X1}$$3.96 \cdot 10^{-17}$
vinit$0$$0$
Cdg_M1_X1d g C value$c_{dg X1}$$6.6 \cdot 10^{-17}$
vinit$0$$0$
Cgb_M1_X1g 0 C value$c_{gb X1}$$2.918 \cdot 10^{-17}$
vinit$0$$0$
Cgs_M1_X1g s C value$c_{gs X1}$$2.883 \cdot 10^{-16}$
vinit$0$$0$
Csb_M1_X1s 0 C value$c_{sb X1}$$3.96 \cdot 10^{-17}$
vinit$0$$0$
Gb_M1_X1d s 0 s g value$g_{b X1}$$- \frac{0.004082 I_{D}}{\left(- I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) \left(- 6.56 \cdot 10^{4} I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) + 1.0\right) + 0.0002035 \left(- I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) \left(- 6.56 \cdot 10^{4} I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) + 1.0\right)\right)^{0.5} + 1.657 \cdot 10^{-7}\right)^{0.5}}$
Gm_M1_X1d s g s g value$g_{m X1}$$- \frac{0.01166 I_{D}}{\left(- I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) \left(- 6.56 \cdot 10^{4} I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) + 1.0\right) + 0.0002035 \left(- I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) \left(- 6.56 \cdot 10^{4} I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) + 1.0\right)\right)^{0.5} + 1.657 \cdot 10^{-7}\right)^{0.5}}$
Go_M1_X1d s d s g value$g_{o X1}$$- 0.1389 I_{D}$
Table: Parameter definitions in 'mosEKVplots'.
NameSymbolicNumeric
$CGBO_{P18}$$1.0 \cdot 10^{-12}$$1.0 \cdot 10^{-12}$
$CGSO_{P18}$$3.0 \cdot 10^{-10}$$3.0 \cdot 10^{-10}$
$CJB_{0 P18}$$0.001$$0.001$
$C_{OX P18}$$\frac{\epsilon_{0} \epsilon_{SiO2}}{TOX_{P18}}$$0.008422$
$E_{CRIT P18}$$1.4 \cdot 10^{7}$$1.4 \cdot 10^{7}$
$I_{0 P18}$$2 C_{OX P18} N_{s P18} U_{T}^{2} u_{0 P18}$$1.356 \cdot 10^{-7}$
$L$$1.8 \cdot 10^{-7}$$1.8 \cdot 10^{-7}$
$LDS_{P18}$$1.8 \cdot 10^{-7}$$1.8 \cdot 10^{-7}$
$N_{s P18}$$1.35$$1.35$
$T$$300$$300.0$
$TOX_{P18}$$4.1 \cdot 10^{-9}$$4.1 \cdot 10^{-9}$
$\Theta_{P18}$$0.35$$0.35$
$U_{T}$$\frac{T k}{q}$$0.02585$
$VAL_{P18}$$4.0 \cdot 10^{7}$$4.0 \cdot 10^{7}$
$Vth_{P18}$$-0.36$$-0.36$
$W$$2.2 \cdot 10^{-7}$$2.2 \cdot 10^{-7}$
$c$$2.998 \cdot 10^{8}$$2.998 \cdot 10^{8}$
$\epsilon_{0}$$\frac{1}{c^{2} \mu_{0}}$$8.854 \cdot 10^{-12}$
$\epsilon_{SiO2}$$3.9$$3.9$
$k$$1.381 \cdot 10^{-23}$$1.381 \cdot 10^{-23}$
$\mu_{0}$$4.0 \cdot 10^{-7} \pi$$1.257 \cdot 10^{-6}$
$q$$1.602 \cdot 10^{-19}$$1.602 \cdot 10^{-19}$
$u_{0 P18}$$0.00892$$0.00892$
$IC_{CRIT X1}$$\frac{0.0625}{N_{s P18}^{2} U_{T}^{2} \left(\Theta_{P18} + \frac{1}{E_{CRIT P18} L}\right)^{2}}$$92.0$
$IC_{X1}$$IC_{i X1} \left(1 + \frac{0.25 IC_{i X1}}{IC_{CRIT X1}}\right)$$- 6.035 \cdot 10^{6} I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right)$
$IC_{i X1}$$- \frac{I_{D} L}{I_{0 P18} W}$$- 6.035 \cdot 10^{6} I_{D}$
$V_{GS X1}$$- 2 N_{s P18} U_{T} \log{\left(e^{IC_{X1}^{0.5}} - 1 \right)} + Vth_{P18}$$- 0.0698 \log{\left(e^{1386.04372125039 \pi^{0.5} \left(- I_{D} \left(- 5220.44515563637 \pi I_{D} + 1.0\right)\right)^{0.5}} - 1.0 \right)} - 0.36$
$c_{db X1}$$CJB_{0 P18} LDS_{P18} W$$3.96 \cdot 10^{-17}$
$c_{dg X1}$$CGSO_{P18} W$$6.6 \cdot 10^{-17}$
$c_{gb X1}$$2 CGBO_{P18} L + \frac{0.3333 C_{OX P18} L W \left(N_{s P18} - 1\right)}{N_{s P18}}$$2.918 \cdot 10^{-17}$
$c_{gs X1}$$CGSO_{P18} W + 0.6667 C_{OX P18} L W$$2.883 \cdot 10^{-16}$
$c_{iss X1}$$c_{dg X1} + c_{gb X1} + c_{gs X1}$$3.835 \cdot 10^{-16}$
$c_{sb X1}$$CJB_{0 P18} LDS_{P18} W$$3.96 \cdot 10^{-17}$
$f_{T X1}$$\frac{0.5 g_{m X1}}{\pi c_{iss X1}}$$- \frac{4.84 \cdot 10^{12} I_{D}}{\left(- I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) \left(- 6.56 \cdot 10^{4} I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) + 1.0\right) + 0.0002035 \left(- I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) \left(- 6.56 \cdot 10^{4} I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) + 1.0\right)\right)^{0.5} + 1.657 \cdot 10^{-7}\right)^{0.5}}$
$g_{b X1}$$g_{m X1} \left(N_{s P18} - 1\right)$$- \frac{0.004082 I_{D}}{\left(- I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) \left(- 6.56 \cdot 10^{4} I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) + 1.0\right) + 0.0002035 \left(- I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) \left(- 6.56 \cdot 10^{4} I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) + 1.0\right)\right)^{0.5} + 1.657 \cdot 10^{-7}\right)^{0.5}}$
$g_{m X1}$$- \frac{I_{D}}{N_{s P18} U_{T} \left(IC_{X1} \left(1 + \frac{IC_{X1}}{IC_{CRIT X1}}\right) + 0.5 \left(IC_{X1} \left(1 + \frac{IC_{X1}}{IC_{CRIT X1}}\right)\right)^{0.5} + 1\right)^{0.5}}$$- \frac{0.01166 I_{D}}{\left(- I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) \left(- 6.56 \cdot 10^{4} I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) + 1.0\right) + 0.0002035 \left(- I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) \left(- 6.56 \cdot 10^{4} I_{D} \left(1.0 - 1.64 \cdot 10^{4} I_{D}\right) + 1.0\right)\right)^{0.5} + 1.657 \cdot 10^{-7}\right)^{0.5}}$
$g_{o X1}$$- \frac{I_{D}}{L VAL_{P18}}$$- 0.1389 I_{D}$
Table: Parameters without definition in 'mosEKVplots.
Name
$I_{D}$

Go to mosEKVplots_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 1.5.0 © 2009-2023 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2023-06-12 11:46:46