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Input stage

Influence feedback capacitance on the noise performance
as if it is in parallel with the source.

Lowest 1/f corner frequency if: 

SLiCAP_python: W=1200u, L=1.25u, ID=1.4m 

Floor E-noise: 5.3nV/m/rt(Hz)

Corner 1/f noise: 34kHz 

Floor noise can be reduced by increasing the current. 

Other combinations of W, L and ID are also possible.

SLiCAP_python: CS_noise.py

LTspice: CSstageNoise.asc
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Determination of L and ID from W, noise, and antenna specifications
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Input stage SLiCAP

vn

in

U1
NM18_noise
ID={ID} IG={IG} W={W} L={L}

+

C1

{C_A}
+

-

V1
value=0

dc=0
dcvar=0
noise=0

+ +

- -

E1
{L_A}

+

C2
{C_f}

out

CS_noise.py: input stage SLiCAP with antenna model

Determination of L and ID from W, noise, and antenna specifications
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Input stage SLiCAP

vn

in

U1
NM18_noise
ID={ID} IG={IG} W={W} L={L}

+

C1

{C_A}
+

-

V1
value=0

dc=0
dcvar=0
noise=0

+ +

- -

E1
{L_A}

+

C2
{C_f}

out

CS_noise.py: input stage SLiCAP with antenna model

Determination of L and ID from W, noise, and antenna specifications

1 : W = 1.20e-3, L = 1.25e-6, ID = 1.39e-03, S_f = 2.81e-17, f_ell = 3.41e+4, Ciss = 1.03e-11, IC=2.27e+0.
2 : W = 9.00e-4, L = 1.71e-6, ID = 2.13e-03, S_f = 2.82e-17, f_ell = 3.34e+4, Ciss = 1.03e-11, IC=6.31e+0.
3 : W = 6.00e-4, L = 2.61e-6, ID = 4.50e-03, S_f = 2.82e-17, f_ell = 3.27e+4, Ciss = 1.03e-11, IC=3.06e+1.
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Input stage SLiCAP

vn

in

U1
NM18_noise
ID={ID} IG={IG} W={W} L={L}

+

C1

{C_A}
+

-

V1
value=0

dc=0
dcvar=0
noise=0

+ +

- -

E1
{L_A}

+

C2
{C_f}

out

CS_noise.py: input stage SLiCAP with antenna model

Determination of L and ID from W, noise, and antenna specifications

1 : W = 1.20e-3, L = 1.25e-6, ID = 1.39e-03, S_f = 2.81e-17, f_ell = 3.41e+4, Ciss = 1.03e-11, IC=2.27e+0.
2 : W = 9.00e-4, L = 1.71e-6, ID = 2.13e-03, S_f = 2.82e-17, f_ell = 3.34e+4, Ciss = 1.03e-11, IC=6.31e+0.
3 : W = 6.00e-4, L = 2.61e-6, ID = 4.50e-03, S_f = 2.82e-17, f_ell = 3.27e+4, Ciss = 1.03e-11, IC=3.06e+1.
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Input stage LTspice

CSstageNoise.asc: input stage LTspice with simple antenna model
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CSstageNoise.asc: input stage LTspice with simple antenna model

Check values of W, L, and ID
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Input stage LTspice

CSstageNoise.asc: input stage LTspice with simple antenna model

Check values of W, L, and ID
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Output stage

Influence feedback capacitance on the noise performance
as if it is in parallel with the load.



24(c) 2020 A.J.M. Montagne

Output stage

Influence feedback capacitance on the noise performance
as if it is in parallel with the load.

Design a push-pull stage that can drive 100 Ohm in parallel with
the feedback capacitance (at 30MHz).
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Output stage

Influence feedback capacitance on the noise performance
as if it is in parallel with the load.

Design a push-pull stage that can drive 100 Ohm in parallel with
the feedback capacitance (at 30MHz).

LTSPICE: OutputStage.asc
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Output stage

Influence feedback capacitance on the noise performance
as if it is in parallel with the load.

Design a push-pull stage that can drive 100 Ohm in parallel with
the feedback capacitance (at 30MHz).

LTSPICE: 

WP=40u, LP=180n, M=11 

OutputStage.asc



27(c) 2020 A.J.M. Montagne

Output stage

Influence feedback capacitance on the noise performance
as if it is in parallel with the load.

Design a push-pull stage that can drive 100 Ohm in parallel with
the feedback capacitance (at 30MHz).

LTSPICE: 

WP=40u, LP=180n, M=11 
WN=40u, LN=180n, M=3

OutputStage.asc
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Output stage

Influence feedback capacitance on the noise performance
as if it is in parallel with the load.

Design a push-pull stage that can drive 100 Ohm in parallel with
the feedback capacitance (at 30MHz).

LTSPICE: 

WP=40u, LP=180n, M=11 
WN=40u, LN=180n, M=3
IDS=1m 

OutputStage.asc
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Output stage

Influence feedback capacitance on the noise performance
as if it is in parallel with the load.

Design a push-pull stage that can drive 100 Ohm in parallel with
the feedback capacitance (at 30MHz).

LTSPICE: 

WP=40u, LP=180n, M=11 
WN=40u, LN=180n, M=3
IDS=1m 

OutputStage.asc
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Output stage LTspice
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Output stage LTspice
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Dual stage amplifier
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Dual stage amplifier

Two cascaded CS stages yield a noninverting controller

Insert another inverting stage in the loop

Replace one CS stage with noninverting stage:

CD or complementary parallel CD

Replace one CS stage with a four-terminal stage
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Dual stage amplifier

Two cascaded CS stages yield a noninverting controller

Insert another inverting stage in the loop

Replace one CS stage with noninverting stage:

CD or complementary parallel CD

Insert another inverting stage

Replace one CS stage with a four-terminal stage
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Dual stage amplifier

Two cascaded CS stages yield a noninverting controller

Insert another inverting stage in the loop

Replace one CS stage with noninverting stage:

CD or complementary parallel CD

Insert another inverting stage

Replace one CS stage with a four-terminal stage
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Dual stage signal path design

SLiCAP circuit: dual-stage with added unity-gain inverting current amplifier:
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SLiCAP circuit: dual-stage with added unity-gain inverting current amplifier:

Bandwidth follows from loop gain-poles product 
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Dual stage signal path design

SLiCAP circuit: dual-stage with added unity-gain inverting current amplifier:

Bandwidth follows from loop gain-poles product 

F1 can be chosen as loop gain reference: asymptotic-gain equals ideal gain!
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Dual stage signal path design

SLiCAP circuit: dual-stage with added unity-gain inverting current amplifier:

SLiCAP: DualStage.py:

Bandwidth follows from loop gain-poles product 

F1 can be chosen as loop gain reference: asymptotic-gain equals ideal gain!
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Dual stage signal path design

SLiCAP circuit: dual-stage with added unity-gain inverting current amplifier:

SLiCAP: DualStage.py:

Bandwidth follows from loop gain-poles product 

F1 can be chosen as loop gain reference: asymptotic-gain equals ideal gain!

Bandwidth design with the asymptotic-gain model
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Dual stage signal path design

SLiCAP circuit: dual-stage with added unity-gain inverting current amplifier:

SLiCAP: DualStage.py:

F1 can be implemented with a current mirror.

Bandwidth follows from loop gain-poles product 

F1 can be chosen as loop gain reference: asymptotic-gain equals ideal gain!

Bandwidth design with the asymptotic-gain model
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Dual stage signal path design

SLiCAP circuit: dual-stage with added unity-gain inverting current amplifier:

SLiCAP: DualStage.py:

F1 can be implemented with a current mirror.

Transistors should have a low transconductance (noise)

Bandwidth follows from loop gain-poles product 

F1 can be chosen as loop gain reference: asymptotic-gain equals ideal gain!

Bandwidth design with the asymptotic-gain model



50(c) 2020 A.J.M. Montagne

Dual stage signal path design

SLiCAP circuit: dual-stage with added unity-gain inverting current amplifier:

SLiCAP: DualStage.py:

F1 can be implemented with a current mirror.

Transistors should have a low transconductance (noise)

Transistors should have a high cut-off frequency (number of dominant poles)

Bandwidth follows from loop gain-poles product 

F1 can be chosen as loop gain reference: asymptotic-gain equals ideal gain!

Bandwidth design with the asymptotic-gain model
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Dual stage signal path design

SLiCAP circuit: dual-stage with added unity-gain inverting current amplifier:

SLiCAP: DualStage.py:

F1 can be implemented with a current mirror.

Transistors should have a low transconductance (noise)

Transistors should have a high cut-off frequency (number of dominant poles)

Bandwidth follows from loop gain-poles product 

F1 can be chosen as loop gain reference: asymptotic-gain equals ideal gain!

Bandwidth design with the asymptotic-gain model
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Dual stage with current mirror
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Dual stage with current mirror

SLiCAP dual-stage with PMOS current mirror:
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Dual stage with current mirror

SLiCAP dual-stage with PMOS current mirror:

SLiCAP: DualStageMirror.py:
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Dual stage with current mirror

SLiCAP dual-stage with PMOS current mirror:

SLiCAP: DualStageMirror.py: Low transconductance PMOS and their influence
on the bandwidth.
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Dual stage with current mirror

SLiCAP dual-stage with PMOS current mirror:

SLiCAP: DualStageMirror.py: Low transconductance PMOS and their influence
on the bandwidth.

Extra attention:
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Dual stage with current mirror

SLiCAP dual-stage with PMOS current mirror:

SLiCAP: DualStageMirror.py: Low transconductance PMOS and their influence
on the bandwidth.

Selection of the loop gain reference.

Extra attention:
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Dual stage with current mirror

SLiCAP dual-stage with PMOS current mirror:

SLiCAP: DualStageMirror.py: Low transconductance PMOS and their influence
on the bandwidth.

Selection of the loop gain reference.

Extra attention:
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Dual stage with local feedback current mirror
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Dual stage with local feedback current mirror

SLiCAP dual-stage with PMOS current mirror with direct feedback:
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Dual stage with local feedback current mirror

SLiCAP dual-stage with PMOS current mirror with direct feedback:
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Dual stage with local feedback current mirror

SLiCAP dual-stage with PMOS current mirror with direct feedback:

SLiCAP: DualStageMirrorRes.py:
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Dual stage with local feedback current mirror

SLiCAP dual-stage with PMOS current mirror with direct feedback:

SLiCAP: DualStageMirrorRes.py: High transconductance PMOS with local feedback.
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Dual stage with local feedback current mirror

SLiCAP dual-stage with PMOS current mirror with direct feedback:

SLiCAP: DualStageMirrorRes.py: High transconductance PMOS with local feedback.

Extra attention:
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Dual stage with local feedback current mirror

SLiCAP dual-stage with PMOS current mirror with direct feedback:

SLiCAP: DualStageMirrorRes.py: High transconductance PMOS with local feedback.

Selection of the loop gain reference.

Extra attention:
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Dual stage with local feedback current mirror

SLiCAP dual-stage with PMOS current mirror with direct feedback:

SLiCAP: DualStageMirrorRes.py: High transconductance PMOS with local feedback.

Selection of the loop gain reference.

Extra attention:


