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How much can a stage contribute to the product
of the loop gain and the dominant poles

Negative feedback in a stage:

M| + Pole splitting may move a pole outside the group of dominant poles
IT$ R;Ij Ci==V gmv;-l% Rzlj Ci==v,
If so the contribution of the stage to the LP product is reduced

Resistive broadbanding around a stage:
Té m * Resistive broadbanding may move a pole outside the group of dominant poles
I R | C

If so the contribution of the stage to the LP product is reduced

Current-driven shorted CS stage (or balanced) has the
T@ —l largest contribution to the LP product
I Cys= 4% }Ie

Maximum contribution = f;
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Loop gain-poles product

How much can a stage contribute to the product
of the loop gain and the dominant poles

Negative feedback in a stage:

M| + Pole splitting may move a pole outside the group of dominant poles
IT$ R;Ij Ci==V gmv;-l% Rzlj Ci==v,
If so the contribution of the stage to the LP product is reduced

Resistive broadbanding around a stage:
Té m * Resistive broadbanding may move a pole outside the group of dominant poles
I R | C

If so the contribution of the stage to the LP product is reduced

Current-driven shorted CS stage (or balanced) has the
T@ —l largest contribution to the LP product
I Cys= 4% }Ie

Maximum contribution = f;
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Miller-effect and cascode stage
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load

1O

JI_
|_(.
-

Ry

Crm= Vi
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load

10 g #)edt
-

Local capacitive feedback in the stage
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Biased, current-driven CS-stage with RC load

Miller-effect and cascode stage

10 U

Ry

Local capacitive feedback in the stage

Small-signal diagram:
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load Biased, current-driven cascode stage with RC load

+ _IJ +
IT@ J < R[] ==V, IT@ J « k|| ==V
L L

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
Small-signal diagram: Small-signal diagram:

I
IST@ —— Cgs gml Ry O — Vi
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load

10 g #)edt
-

Local capacitive feedback in the stage
Small-signal diagram:

=
IST@ — gml Re| | Com=m Vi

Cys INCreases the sum of the poles:
pole-splitting
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load

10 g #)edt
-

Local capacitive feedback in the stage
Small-signal diagram:

=
IST@ — gml Re| | Com=m Vi

Cys INCreases the sum of the poles:
pole-splitting

occurs if: g, Ry > 1
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load

10 Lig #Qed?
L

Local capacitive feedback in the stage
Small-signal diagram:

=
IST@ — gml Re| | Com=m Vi

Cys INCreases the sum of the poles:
pole-splitting

occurs if: g, R, > 1

product of the poles not affected
by Cyq If cyq < cys and cyq < C
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load

10 g #)edt
-

Local capacitive feedback in the stage
Small-signal diagram:

=
IST@ — gml Re| | Com=m Vi

A |
Is
Cys INCreases the sum of the poles: CS stage
pole-splitting
occurs if: g, R, > 1
> f
product of the poles not affected
by Cyq if cha < cgs and cyq < C
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load Biased, current-driven cascode stage with RC load

10 g #)edt
-

Local capacitive feedback in the stage
Small-signal diagram:

=
IST@ — gml Re| | Com=m Vi

A |
Is
Cys INCreases the sum of the poles: CS stage
pole-splitting
occurs if: g, R, > 1
> f
product of the poles not affected
by Cyq if cha < cgs and cyq < C
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load Biased, current-driven cascode stage with RC load

+ _IJ +
IST@ J :. Ryl | Cp==V/, ]ST@ J |-I: Re| | Com= Vi
L L

Local capacitive feedback in the stage
Small-signal diagram:

=
IST@ — gml Re| | Com=m Vi

A |
Is
Cys INCreases the sum of the poles: CS stage
pole-splitting
occurs if: g, R, > 1
> f
product of the poles not affected
by Cyq if cha < cgs and cyq < C
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load Biased, current-driven cascode stage with RC load

+ _IJ +
IST@ J :. Ryl | Cp==V/, ]ST@ J |-I: Re| | Com= Vi
L L

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
Small-signal diagram:

=
IST@ — gml Re| | Com=m Vi

A |
Is
Cys INCreases the sum of the poles: CS stage
pole-splitting
occurs if: g, R, > 1
> f
product of the poles not affected
by Cyq if cha < cgs and cyq < C
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load Biased, current-driven cascode stage with RC load

+ _IJ +
IST@ J :. Ryl | Cp==V/, ]ST@ J |-I: Re| | Com= Vi
L L

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
Small-signal diagram: Small-signal diagram:

=
IST@ — gml Re| | Com=m Vi

A |
Is
Cys INCreases the sum of the poles: CS stage
pole-splitting
occurs if: g, R, > 1
> f
product of the poles not affected
by Cyq if cha < cgs and cyq < C
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load Biased, current-driven cascode stage with RC load

+ _IJ +
IST@ J :. Ryl | Cp==V/, ]ST@ J |-I: Re| | Com= Vi
L L

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
Small-signal diagram: Small-signal diagram:
-
+ + + +
IST@ = Cgs gml Rel | Comm Vi IST@ = Cys gml Rel | Comm Vi
A |
I
Cys INCreases the sum of the poles: CS stage
pole-splitting
occurs if: g, R, > 1
product of the poles not affected >f

by Cyq if cha < cgs and cyq < C
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load Biased, current-driven cascode stage with RC load

+ _IJ +
IST@ J :. Ryl | Cp==V/, ]ST@ J |-I: Re| | Com= Vi
L L

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
Small-signal diagram: Small-signal diagram:
-
+ + + +
IST@ = Cgs gml Rel | Comm Vi IST@ = Cys gml Rel | Comm Vi
A |

— Cascode stage
— (S stage

Cys INCreases the sum of the poles:
pole-splitting

occurs if: g, R, > 1

product of the poles not affected
by Cyq if cha < cgs and cyq < C
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load Biased, current-driven cascode stage with RC load

+ _IJ +
IST@ J :. Ryl | Cp==V/, ]ST@ J |-I: Re| | Com= Vi
L L

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
Small-signal diagram: Small-signal diagram:
-
+ + + +
IST@ = Cgs gml Rel | Comm Vi IST@ = Cys gml Rel | Comm Vi
A |

——  Cascode stage Cascode stage is considered a
— CS stage single stage

Cys INCreases the sum of the poles:
pole-splitting

occurs if: g, R, > 1

product of the poles not affected
by Cyq if cha < cgs and cyq < C

(c) 2019 A.J.M. Montagne 89



Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load Biased, current-driven cascode stage with RC load

IST@ J.: Ryl | Cp==V/, ]ST@ Jl—l: Re| | Com= Vi
L L

Local capacitive feedback in the stage

Small-signal diagram:

=

IST@ — Cgs gml RE Cg

Cys INCreases the sum of the poles:
pole-splitting

occurs if: g, R, > 1

product of the poles not affected
by Cyq if cha < cgs and cyq < C

1) +

Strong reduction of local capacitive feedback in the stage
Small-signal diagram:

+ +
[ST@ — Cgs gml Ry Crm=V,
1k
——  Cascode stage Cascode stage is considered a
— CS stage single stage

CG stage contributes a
(non dominant) pole at f;
and unity current gain
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load

Local capacitive feedback in the stage

Small-signal diagram:

=

IST@ — Cgs g’ml RE Cg

Cys INCreases the sum of the poles:
pole-splitting

occurs if: g, R, > 1

product of the poles not affected
by Cyq if cha < cgs and cyq < C

Biased, current-driven cascode stage with RC load

IST@ JE Re| | Cy==V, ET@ JE LRE Ce—-l‘;e

Strong reduction of local capacitive feedback in the stage

Small-signal diagram:

S

— Cascode stage
— (S stage

Cascode stage is considered a
single stage

CG stage contributes a
(non dominant) pole at f;
and unity current gain

Uni-lateral stage
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load

Local capacitive feedback in the stage

Small-signal diagram:

=

IST@ — Cgs g’ml RE Cg

Cys INCreases the sum of the poles:
pole-splitting

occurs if: g, R, > 1

product of the poles not affected
by Cyq if cha < cgs and cyq < C

Biased, current-driven cascode stage with RC load

IST@ JE Re| | Cy==V, ET@ JE LRE Ce—-l‘;e

Strong reduction of local capacitive feedback in the stage

Small-signal diagram:

S

— Cascode stage
— (S stage

Cascode stage is considered a
single stage

CG stage contributes a
(non dominant) pole at f;
and unity current gain

Uni-lateral stage
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Uni-lateral stages with maximum LP product contribution
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Uni-lateral stages with maximum LP product contribution

Three-terminal
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Uni-lateral stages with maximum LP product contribution

Three-terminal

inverting
CS-CG cascode stage
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Uni-lateral stages with maximum LP product contribution

Three-terminal

Inverting
CS-CG cascode stage

T
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Uni-lateral stages with maximum LP product contribution

Three-terminal

Inverting
CS-CG cascode stage
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Uni-lateral stages with maximum LP product contribution

Three-terminal

Inverting non-inverting
CS-CG cascode stage CD-CG cascode stage
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Uni-lateral stages with maximum LP product contribution

Three-terminal

Inverting non-inverting
CS-CG cascode stage CD-CG cascode stage

el AT
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Uni-lateral stages with maximum LP product contribution

Three-terminal

Inverting

CS-CG cascode stage

non-inverting
CD-CG cascode stage

AT

1

(0]
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Uni-lateral stages with maximum LP product contribution

Three-terminal Four-terminal

Inverting non-inverting
CS-CG cascode stage CD-CG cascode stage

+ - + +
T +gm ) _|_gm
c?_l%? . ci=-T$O= .
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Uni-lateral stages with maximum LP product contribution

Three-terminal Four-terminal

Inverting non-inverting differential pair
CS-CG cascode stage CD-CG cascode stage cascode stage

+ - + +
T +gm ) _|_gm
c?_l%? . ci=-T$O= .

I9m = 9m, Ci — Cgs, + Cgd; Co = Cqd, + Cdb,

Current driven: To = (1 + gmlrol) T 04
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Uni-lateral stages with maximum LP product contribution

Three-terminal Four-terminal

Inverting non-inverting differential pair
CS-CG cascode stage CD-CG cascode stage cascode stage
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Uni-lateral stages with maximum LP product contribution

Three-terminal Four-terminal

Inverting non-inverting differential pair
CS-CG cascode stage CD-CG cascode stage cascode stage
+ - + + + o

_ + _ _ _ n

T +gm ] _|_gm
zeTl, TieTl., T ART U
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Uni-lateral stages with maximum LP product contribution

Three-terminal

Inverting non-inverting
CS-CG cascode stage CD-CG cascode stage

el AT

— . 9m —
C; —l Co To C;

1

(0]

gm — gm1

Four-terminal

differential pair
cascode stage
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Uni-lateral stages with maximum LP product contribution

Three-terminal

Inverting non-inverting
CS-CG cascode stage CD-CG cascode stage

9m = Gm, Ci = Cgs; T Cqd,

Four-terminal

differential pair
cascode stage
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Uni-lateral stages with maximum LP product contribution

Three-terminal

Inverting non-inverting

CS-CG cascode stage CD-CG cascode stage

9m = 9m,; Ci = Cgs; T Cgd,

Co = Cgdy T Cdb,

Four-terminal

differential pair
cascode stage
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Uni-lateral stages with maximum LP product contribution

Three-terminal Four-terminal

Inverting non-inverting differential pair
CS-CG cascode stage CD-CG cascode stage cascode stage

+ - + + + -
_ + _ _ _ +

] +gm | +gm +gm
cf-l%f ro c@.=-T$cO= ro T T L

I9m = 9m, Ci — Cgs, + Cgd; Co = Cqd, + Cdb,

Current driven:
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Uni-lateral stages with maximum LP product contribution

Three-terminal Four-terminal

Inverting non-inverting differential pair
CS-CG cascode stage CD-CG cascode stage cascode stage

+ - + + + -
_ + _ _ _ +

] +gm | +gm +gm
cf-l%f ro c@.=-T$cO= ro T T L

I9m = 9m, Ci — Cgs, + Cgd; Co = Cqd, + Cdb,

Current driven: To = (1 -+ gmlrol) T 04
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Uni-lateral stages with maximum LP product contribution

Three-terminal Four-terminal

Inverting non-inverting differential pair
CS-CG cascode stage CD-CG cascode stage cascode stage

+ - + + + -
_ + _ _ _ +

] +gm | +gm +gm
cf-l%f ro c@.=-T$cO= ro T T L

I9m = 9m, Ci — Cgs, + Cgd; Co = Cqd, + Cdb,

Current driven: To = (1 + gmlrol) T 04
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Number of stages
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Number of stages

Rough estimation based upon required bandwidth:
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function

m = number of dominant poles of single-stage solution
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH

Design equation:
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH
Design equation:
fa = "t/ fLLP
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH

Design equation: Solution:
— n+”</ LPl
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

T __ mlog fg—log L P,
_ +\/ " [P n = o

log Frr
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

_ n+n</ LPl n — m log fg—log L P;

log J]:T

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

_ n+n</ LPl n — m log fg—log L P;

log J]:T

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

|F:
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

T __ mlog fg—log L P,

log o

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

IF: Freguency compensation necessary and possible
(without adversely affecting drive capability and distortion):
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

T __ mlog fg—log L P,

log o

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

IF: Freguency compensation necessary and possible
(without adversely affecting drive capability and distortion):

THEN:
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

n+m _ mlngH logLP1

log o

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

IF: Freguency compensation necessary and possible
(without adversely affecting drive capability and distortion):

THEN: Do frequency compensation
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

T __ mlog fg—log L P,

log o

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

IF: Freguency compensation necessary and possible
(without adversely affecting drive capability and distortion):

THEN: Do frequency compensation
ELSE:
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

T __ mlog fg—log L P,

log o

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

IF: Freguency compensation necessary and possible
(without adversely affecting drive capability and distortion):

THEN: Do frequency compensation

ELSE: Design cascade connection of two amplifiers
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
fH = required minimum value of the low-pass cut-off fregency of servo function
m = number of dominant poles of single-stage solution

N = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

T __ mlog fg—log L P,

log o

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

IF: Freguency compensation necessary and possible
(without adversely affecting drive capability and distortion):

THEN: Do frequency compensation

ELSE: Design cascade connection of two amplifiers
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Interconnection of stages
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Interconnection of stages

Proper cascade connection
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Interconnection of stages

Proper cascade connection

stage 1 stage 2 stage n

+ + + + LI+ + o
Il | ™ 12| 7 (Lo 2| > ||lue,
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Interconnection of stages

Proper cascade connection

stage 1

Im/)
o

+ +

—

stage 2

+ +

—

stage n

+ +
—_—

Tt <
O

Examples two-stage controllers
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Interconnection of stages

Proper cascade connection

stage 1

LLQ
o

+ +

—

stage 2

+ +

—

stage n

+ +
—_—

Tt <
O

Examples two-stage controllers
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Interconnection of stages

Proper cascade connection

stage 1

Im/)
o

_______________

______________________

No port isolation.

Can only be used in combination
with a transformer connected to

one of the ports.

+ +

stage 2

—

1<

+ +
—

stage n

+
—_—

_I_

Tt <
O

Examples two-stage controllers
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Interconnection of stages

Proper cascade connection

stage 1

LLQ
o

_______________

______________________

No port isolation.
Can only be used in combination
with a transformer connected to

one of the ports.

+

—

+

stage 2

1<

+
—

+

stage n

+
—_—

_I_

Tt <
O

Examples two-stage controllers

(c) 2019 A.J.M. Montagne

137



Interconnection of stages

Proper cascade connection

stage 1

Im/)
o

_______________

______________________

No port isolation.
Can only be used in combination
with a transformer connected to
one of the ports.

+ +

stage 2

—

1<

+ +
—

stage n

+ +
—_—

Tt <
O

Examples two-stage controllers

Simple two-transistor controller.
Input current of the second
stage flows through the
external network.
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Interconnection of stages

Proper cascade connection

stage 1

LLQ
o

No port isolation.
Can only be used in combination
with a transformer connected to
one of the ports.

stage 2

1<

+ +

—

stage n

1+ +

A

Tt <

Simple two-transistor controller.
Input current of the second

stage flows through the
external network.
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Interconnection of stages

Proper cascade connection

stage 1

Im/)
o

No port isolation.
Can only be used in combination
with a transformer connected to
one of the ports.

stage 2

1<

+ + | - - -

i< —

—

stage n

1+ +

Tt <

Simple two-transistor controller.
Input current of the second

stage flows through the
external network.

Two-stage controller with

anti-series output stage.
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Interconnection of stages

Proper cascade connection

stage 1

LLQ
o

No port isolation.
Can only be used in combination
with a transformer connected to
one of the ports.

stage 2

1<

+ + | - - -

i< —

—
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Simple two-transistor controller.
Input current of the second

stage flows through the
external network.

Two-stage controller with

anti-series output stage.

(c) 2019 A.J.M. Montagne 141



Interconnection of stages

Proper cascade connection

stage 1

No port isolation.
Can only be used in combination
with a transformer connected to
one of the ports.
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Simple two-transistor controller.
Input current of the second

stage flows through the
external network.

Two-stage controller with
anti-series output stage.

Tt <
O

Two-stage controller with
anti-series input stage.

A push-pull stage can be
used for the second stage.
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Proper cascade connection
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Two-stage controller with
anti-series input stage.

A push-pull stage can be
used for the second stage.
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Interconnection of stages

Proper cascade connection

stage 1

No port isolation.
Can only be used in combination
with a transformer connected to
one of the ports.

stage 2

1<

+ +
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stage n

+ +
—_—

Simple two-transistor controller.
Input current of the second

stage flows through the
external network.

Two-stage controller with
anti-series output stage.

Tt <
O

Two-stage controller with
anti-series input stage.

A push-pull stage can be
used for the second stage.

Fully balanced two-stage

controller.
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Interconnection of stages

Proper cascade connection

stage 1

No port isolation.
Can only be used in combination
with a transformer connected to
one of the ports.

stage 2
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stage n
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Simple two-transistor controller.
Input current of the second

stage flows through the
external network.

Two-stage controller with
anti-series output stage.

Tt <
O

Two-stage controller with
anti-series input stage.

A push-pull stage can be
used for the second stage.

Fully balanced two-stage

controller.
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Interconnection of stages

Four terminal controller options
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Interconnection of stages

Four terminal controller options

Reverse connections of both
the input port and the output port
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Interconnection of stages

Four terminal controller options
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Interconnection of stages

Four terminal controller options

Reverse connections of both
the input port and the output port
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Interconnection of stages

Four terminal controller options

Reverse connections of both
the input port and the output port
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Interconnection of stages

Four terminal controller options

Reverse connections of both
the input port and the output port
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Interconnection of stages

Four terminal controller options

Reverse connections of both
the input port and the output port
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Interconnection of stages

Four terminal controller options

Reverse connections of both | UtN
the input port and the output port b
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Interconnection of stages

Four terminal controller options

Reverse connections of both
the input port and the output port
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Interconnection of stages
Port isolation considerations
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Interconnection of stages
Port isolation considerations
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Interconnection of stages
Port isolation considerations

Internal ground connection:
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Interconnection of stages
Port isolation considerations

Internal ground connection:

Two-port conditions no longer valid.
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Interconnection of stages
Port isolation considerations

Internal ground connection:
Two-port conditions no longer valid.

Ideal gain may differ from asymptotic gain
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Interconnection of stages
Port isolation considerations

Internal ground connection:
Two-port conditions no longer valid.
Ideal gain may differ from asymptotic gain

Controller may not longer behave as a nullor for infinite loop gain
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Interconnection of stages
Port isolation considerations

stage 1 stage 2 Internal ground connection:
+ + + + o Two-port conditions no longer valid.
— —
— — * — — o Ideal gain may differ from asymptotic gain
1 Controller may not longer behave as a nullor for infinite loop gain
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Interconnection of stages
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Interconnection of stages
Port isolation considerations
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Interconnection of stages
Port isolation considerations

Internal ground connection:
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Interconnection of stages
Port isolation considerations
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