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Resistive broadbanding may move a pole outside the group of dominant poles

If so the contribution of the stage to the LP product is reduced

Current-driven shorted CS stage (or balanced) has the
largest contribution to the LP product

+

-

+

-

+

-
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Loop gain-poles product

How much can a stage contribute to the product
of the loop gain and the dominant poles?

Negative feedback in a stage:

Pole splitting may move a pole outside the group of dominant poles

If so the contribution of the stage to the LP product is reduced

Resistive broadbanding around a stage:

Resistive broadbanding may move a pole outside the group of dominant poles

If so the contribution of the stage to the LP product is reduced

Current-driven shorted CS stage (or balanced) has the
largest contribution to the LP product
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-

+

-

+

-

+

-
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Loop gain-poles product

How much can a stage contribute to the product
of the loop gain and the dominant poles?

Negative feedback in a stage:

Pole splitting may move a pole outside the group of dominant poles

If so the contribution of the stage to the LP product is reduced

Resistive broadbanding around a stage:

Resistive broadbanding may move a pole outside the group of dominant poles

If so the contribution of the stage to the LP product is reduced

Current-driven shorted CS stage (or balanced) has the
largest contribution to the LP product

Maximum contribution = fT
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-

+

-

+

-

+

-
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Loop gain-poles product

How much can a stage contribute to the product
of the loop gain and the dominant poles?

Negative feedback in a stage:

Pole splitting may move a pole outside the group of dominant poles

If so the contribution of the stage to the LP product is reduced

Resistive broadbanding around a stage:

Resistive broadbanding may move a pole outside the group of dominant poles

If so the contribution of the stage to the LP product is reduced

Current-driven shorted CS stage (or balanced) has the
largest contribution to the LP product

Maximum contribution = fT
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-

+

-

+

-

+

-
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Miller-effect and cascode stage
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Miller-effect and cascode stage

Biased, current-driven CS-stage with RC load
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Miller-effect and cascode stage

+

-

Biased, current-driven CS-stage with RC load
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Miller-effect and cascode stage

+

-

Biased, current-driven CS-stage with RC load

Local capacitive feedback in the stage
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Miller-effect and cascode stage

+

-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

Local capacitive feedback in the stage
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Miller-effect and cascode stage

+

-

+

-

+

-

+

-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

Biased, current-driven cascode stage with RC load

Small-signal diagram:

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
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Miller-effect and cascode stage

+

-

+

-

+

-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

cgs increases the sum of the poles:
pole-splitting

Local capacitive feedback in the stage
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Miller-effect and cascode stage

+

-

+

-

+

-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

cgs increases the sum of the poles:
pole-splitting

occurs if:

Local capacitive feedback in the stage
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Miller-effect and cascode stage

+

-

+

-

+

-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

cgs increases the sum of the poles:
pole-splitting

occurs if:

product of the poles not affected
by cgd if and

Local capacitive feedback in the stage
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Miller-effect and cascode stage

+

-

+

-

+

-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

CS stagecgs increases the sum of the poles:
pole-splitting

occurs if:

product of the poles not affected
by cgd if and

Local capacitive feedback in the stage
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Miller-effect and cascode stage

+

-

+

-

+

-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

Biased, current-driven cascode stage with RC load

CS stagecgs increases the sum of the poles:
pole-splitting

occurs if:

product of the poles not affected
by cgd if and

Local capacitive feedback in the stage
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Miller-effect and cascode stage

+

-

+

-

+

-

+

-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

Biased, current-driven cascode stage with RC load

CS stagecgs increases the sum of the poles:
pole-splitting

occurs if:

product of the poles not affected
by cgd if and

Local capacitive feedback in the stage
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Miller-effect and cascode stage
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-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

Biased, current-driven cascode stage with RC load

CS stagecgs increases the sum of the poles:
pole-splitting

occurs if:

product of the poles not affected
by cgd if and

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
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Miller-effect and cascode stage
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+

-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

Biased, current-driven cascode stage with RC load

Small-signal diagram:

CS stagecgs increases the sum of the poles:
pole-splitting

occurs if:

product of the poles not affected
by cgd if and

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
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Miller-effect and cascode stage
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-
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-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

Biased, current-driven cascode stage with RC load

Small-signal diagram:

CS stagecgs increases the sum of the poles:
pole-splitting

occurs if:

product of the poles not affected
by cgd if and

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
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Miller-effect and cascode stage

+
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+

-

+

-

+

-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

Biased, current-driven cascode stage with RC load

Small-signal diagram:

Cascode stage

CS stagecgs increases the sum of the poles:
pole-splitting

occurs if:

product of the poles not affected
by cgd if and

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
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Miller-effect and cascode stage
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+
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+
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+

-

+

-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

Biased, current-driven cascode stage with RC load

Small-signal diagram:

Cascode stage

CS stagecgs increases the sum of the poles:
pole-splitting

Cascode stage is considered a
single stage

occurs if:

product of the poles not affected
by cgd if and

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
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Miller-effect and cascode stage
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+

-

+

-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

Biased, current-driven cascode stage with RC load

Small-signal diagram:

Cascode stage

CS stagecgs increases the sum of the poles:
pole-splitting

Cascode stage is considered a
single stage

CG stage contributes a
(non dominant) pole at fT

and unity current gain
occurs if:

product of the poles not affected
by cgd if and

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage



91(c) 2019 A.J.M. Montagne

Miller-effect and cascode stage
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+
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-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

Biased, current-driven cascode stage with RC load

Small-signal diagram:

Cascode stage

CS stagecgs increases the sum of the poles:
pole-splitting

Cascode stage is considered a
single stage

CG stage contributes a
(non dominant) pole at fT

and unity current gain

Uni-lateral stage

occurs if:

product of the poles not affected
by cgd if and

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
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Miller-effect and cascode stage
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+
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-

Biased, current-driven CS-stage with RC load

Small-signal diagram:

Biased, current-driven cascode stage with RC load

Small-signal diagram:

Cascode stage

CS stagecgs increases the sum of the poles:
pole-splitting

Cascode stage is considered a
single stage

CG stage contributes a
(non dominant) pole at fT

and unity current gain

Uni-lateral stage

occurs if:

product of the poles not affected
by cgd if and

Local capacitive feedback in the stage Strong reduction of local capacitive feedback in the stage
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Structured Electronic Design

EE4109
Controller design:
Preferred stages

Anton J.M. Montagne
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Uni-lateral stages with maximum LP product contribution
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Uni-lateral stages with maximum LP product contribution

Three-terminal
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

Three-terminal
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

Three-terminal

+

-
+
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

Three-terminal
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-
+

-

+
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal

+

-
+

-

+

-
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal

+

-
+

-

+

-

+

-

+

-
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal

+

-
+

-

+

-

+

-

+

-

+

-
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal Four-terminal

+

-
+

-

+

-

+

-

+

-

+

-
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal Four-terminal

differential pair
cascode stage

+

-
+

-

+

-

+

-

+

-

+

-

Current driven:
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal Four-terminal

differential pair
cascode stage

+

-
+

-

+

-

+

-

+

- +

-

+

-

+

-
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal Four-terminal

differential pair
cascode stage

+

-
+

-

+

-

+

-

+

- +

-

+

-

+

-

+
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal Four-terminal

differential pair
cascode stage

+

-
+

-

+

-

+

-

+

- +

-

+

-

+

-

+
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal Four-terminal

differential pair
cascode stage

+

-
+

-

+

-

+

-

+

- +

-

+

-

+

-

+
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal Four-terminal

differential pair
cascode stage

+

-
+

-

+

-

+

-

+

- +

-

+

-

+

-

+
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal Four-terminal

differential pair
cascode stage

+

-
+

-

+

-

+

-

+

- +

-

+

-

+

-

+

-

Current driven:
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal Four-terminal

differential pair
cascode stage

+

-
+

-

+

-

+

-

+

- +

-

+

-

+

-

+

-

Current driven:
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Uni-lateral stages with maximum LP product contribution

inverting
CS-CG cascode stage

non-inverting
CD-CG cascode stage

Three-terminal Four-terminal

differential pair
cascode stage

+

-
+

-

+

-

+

-

+

- +

-

+

-

+

-

+

-

Current driven:
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Number of stages
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Number of stages

Rough estimation based upon required bandwidth:
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH

Design equation:
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH

Design equation:
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH

Design equation: Solution:
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH

Design equation: Solution:
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

IF:
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

Frequency compensation necessary and possible
(without adversely affecting drive capability and distortion):

IF:
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

Frequency compensation necessary and possible
(without adversely affecting drive capability and distortion):

THEN:

IF:



126(c) 2019 A.J.M. Montagne

Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

Frequency compensation necessary and possible
(without adversely affecting drive capability and distortion):

THEN:

IF:

Do frequency compensation
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

Frequency compensation necessary and possible
(without adversely affecting drive capability and distortion):

THEN:

IF:

ELSE:

Do frequency compensation
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

Frequency compensation necessary and possible
(without adversely affecting drive capability and distortion):

THEN:

IF:

ELSE:

Do frequency compensation

Design cascade connection of two amplifiers
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Number of stages

Rough estimation based upon required bandwidth:

LP1 = single-stage LP product

fH = required minimum value of the low-pass cut-off freqency of servo function

m = number of dominant poles of single-stage solution

n = minimum number of stages that need to be added to achieve fH

Design equation: Solution:

What if the bandwidth is large enough and the number of stages is based upon
the VI drive capability or the weak distortion?

Frequency compensation necessary and possible
(without adversely affecting drive capability and distortion):

THEN:

IF:

ELSE:

Do frequency compensation

Design cascade connection of two amplifiers
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Controller design:

Interconnection of stages
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Interconnection of stages
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Interconnection of stages

Proper cascade connection
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Interconnection of stages
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stage 1 stage 2 stage n

Proper cascade connection



134(c) 2019 A.J.M. Montagne

Interconnection of stages
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stage 1 stage 2 stage n

Proper cascade connection

Examples two-stage controllers
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Interconnection of stages
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Proper cascade connection

Examples two-stage controllers
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Interconnection of stages
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stage 1 stage 2 stage n

+

-

+

-

No port isolation.
Can only be used in combination
with a transformer connected to
one of the ports.

Proper cascade connection

Examples two-stage controllers
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Interconnection of stages
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Examples two-stage controllers
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Interconnection of stages
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stage 1 stage 2 stage n
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-

+
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-

+

-

No port isolation.
Can only be used in combination
with a transformer connected to
one of the ports.

Simple two-transistor controller.
Input current of the second 
stage flows through the 
external network.

Proper cascade connection

Examples two-stage controllers
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Interconnection of stages
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with a transformer connected to
one of the ports.

Simple two-transistor controller.
Input current of the second 
stage flows through the 
external network.

Proper cascade connection

Examples two-stage controllers
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Interconnection of stages
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Can only be used in combination
with a transformer connected to
one of the ports.

Simple two-transistor controller.
Input current of the second 
stage flows through the 
external network.

Two-stage controller with
anti-series output stage.

Proper cascade connection

Examples two-stage controllers
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Interconnection of stages
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Examples two-stage controllers
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Interconnection of stages

+
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-

stage 1 stage 2 stage n

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

No port isolation.
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