Structured Electronic Design

Principle of amplification and a formal approach to biasing

Anton J.M. Montagne
Amplification and biasing

Source

Amplifier

Load

R_s i_s i_ℓ

v_s v_ℓ

R_ℓ
Amplification and biasing

Signal values at the load should have a unique correspondence with those of the source.
Amplification and biasing

Signal values at the load should have a unique correspondence with those of the source.

The available power at the output of the amplifier should exceed that of the source.
Amplification and biasing

Signal values at the load should have a unique correspondence with those of the source.
The available power at the output of the amplifier should exceed that of the source.
Amplification and biasing
Amplification and biasing

Device equations:

\[I_{DS} = f(V_{DS}, V_{GS}) \]
\[I_{GS} = f(V_{DS}, V_{GS}) \]
Amplification and biasing

Device equations:

\[I_{DS} = f(V_{DS}, V_{GS}) \]
\[I_{GS} = f(V_{DS}, V_{GS}) \]

Only drain current if:
Amplification and biasing

Device equations:

\[I_{DS} = f(V_{DS}, V_{GS}) \]
\[I_{GS} = f(V_{DS}, V_{GS}) \]

Only drain current if:

nonzero drain-source voltage
Amplification and biasing

Device equations:

\[I_{DS} = f(V_{DS}, V_{GS}) \]
\[I_{GS} = f(V_{DS}, V_{GS}) \]

Only drain current if:

- nonzero drain-source voltage
- gate-source voltage exceeds the threshold voltage
Amplification and biasing

Device equations:
\[I_{DS} = f(V_{DS}, V_{GS}) \]
\[I_{GS} = f(V_{DS}, V_{GS}) \]

Only drain current if:
- nonzero drain-source voltage
- gate-source voltage exceeds the threshold voltage

Zero-signal operating point:
Amplification and biasing

Device equations:
\[I_{DS} = f(V_{DS}, V_{GS}) \]
\[I_{GS} = f(V_{DS}, V_{GS}) \]

Only drain current if:
- nonzero drain-source voltage
- gate-source voltage exceeds the threshold voltage

Zero-signal operating point:
\[V_{GS} = 0 \quad V_{DS} = 0 \]
\[I_{GS} = 0 \quad I_{DS} = 0 \]
Amplification and biasing

Device equations:

\[I_{DS} = f(V_{DS}, V_{GS}) \]
\[I_{GS} = f(V_{DS}, V_{GS}) \]

Only drain current if:
- nonzero drain-source voltage
- gate-source voltage exceeds the threshold voltage

Zero-signal operating point:

\[V_{GS} = 0 \quad V_{DS} = 0 \]
\[I_{GS} = 0 \quad I_{DS} = 0 \]

No load signal
Amplification and biasing

Device equations:
\[I_{DS} = f(V_{DS}, V_{GS}) \]
\[I_{GS} = f(V_{DS}, V_{GS}) \]

Only drain current if:
- nonzero drain-source voltage
- gate-source voltage exceeds the threshold voltage

Zero-signal operating point:
\[V_{GS} = 0 \quad V_{DS} = 0 \]
\[I_{GS} = 0 \quad I_{DS} = 0 \]

No load signal
Amplification and biasing

Add output voltage source
Amplification and biasing

Add output voltage source
Amplification and biasing

Add output voltage source

Load signal if the source voltage exceeds the threshold voltage
Amplification and biasing

Add output voltage source

Load signal if the source voltage exceeds the threshold voltage

No unique correspondence between source and load signal values
Amplification and biasing

Add output voltage source

Load signal if the source voltage exceeds the threshold voltage
No unique correspondence between source and load signal values
Amplification and biasing

Add input voltage source
Amplification and biasing

Add input voltage source

\[v_s \quad i_s + I_{GS} \quad -V_{GS}^+ \quad +V_{DS}^- \quad i_{\ell} - I_{DS} \quad R_{\ell} \quad v_{\ell}^- \]
Amplification and biasing

Add input voltage source

Load signal for all values of the source signal if:

\[V_{GS} + v_s > V_{th} \] (threshold voltage)
Amplification and biasing

Add input voltage source

Load signal for all values of the source signal if:

\[V_{GS} + v_s > V_{th} \] (threshold voltage)

Unique correspondence between the source voltage and the load voltage
Amplification and biasing

Load signal for all values of the source signal if:

\[V_{GS} + v_s > V_{th} \] (threshold voltage)

Unique correspondence between the source voltage and the load voltage

\[I_{GS} \text{ and } I_{DS} \] bias currents flow through the source and the load

Add input voltage source
Amplification and biasing

Add input voltage source

Load signal for all values of the source signal if:
\[V_{GS} + v_s > V_{th} \] (threshold voltage)

Unique correspondence between the source voltage and the load voltage

\[I_{GS} \] and \[I_{DS} \] bias currents flow through the source and the load
Amplification and biasing

Add bias currents
Amplification and biasing

Add bias currents

\[v_s \rightarrow R_s \rightarrow i_s \rightarrow -V_{GS} \rightarrow + \]

\[+ \rightarrow V_{DS} \rightarrow - \rightarrow I_{DS} \rightarrow \]

\[+ \rightarrow R_f \rightarrow i_f \rightarrow + \]

\[+ \rightarrow v_f \rightarrow - \]
Amplification and biasing

Add bias currents
Amplification and biasing

Add bias currents

No bias currents flow through the source and the load
Amplification and biasing

Add bias currents

No bias currents flow through the source and the load

\((v_s, v_\ell), (v_s, i_\ell), (i_s, v_\ell), (i_s, i_\ell)\) characteristics pass through the origin
No bias currents flow through the source and the load

\((v_s, v_{\ell}), (v_s, i_{\ell}), (i_s, v_{\ell}), (i_s, i_{\ell})\) characteristics pass through the origin
Amplification and biasing
Amplification and biasing

Biased amplifier stage
Amplification and biasing

Biased amplifier stage

Bias power delivered by I_{GS} and I_{DS}
Amplification and biasing

Biased amplifier stage, alternative arrangement
Amplification and biasing

Biased amplifier stage, alternative arrangement

Bias power delivered by V_{GS} and V_{DS}
Amplification and biasing

Linearization in the operating point:

\[
\begin{pmatrix}
 v_i \\
 i_i
\end{pmatrix}
= \begin{pmatrix}
 A & B \\
 C & D
\end{pmatrix}
\cdot
\begin{pmatrix}
 v_o \\
 i_o
\end{pmatrix}
\]
Amplification and biasing

Linearization in the operating point:

\[
\begin{pmatrix}
 v_i \\
 i_i
\end{pmatrix}
= \begin{pmatrix}
 A & B \\
 C & D
\end{pmatrix}
\cdot
\begin{pmatrix}
 v_o \\
 i_o
\end{pmatrix}
\]

Maximum available power gain of a unilateral linear resistive two-port:
Amplification and biasing

Linearization in the operating point:

\[
\begin{pmatrix}
 v_i \\
 i_i \\
\end{pmatrix} = \begin{pmatrix}
 A & B \\
 C & D \\
\end{pmatrix} \cdot \begin{pmatrix}
 v_o \\
 i_o \\
\end{pmatrix}
\]

Maximum available power gain of a unilateral linear resistive two-port:

\[
P_{av,\text{max}} = \frac{1}{4AD}
\]
Amplification and biasing

Linearization in the operating point:

\[
\begin{pmatrix}
 v_i \\
 i_i
\end{pmatrix}
= \begin{pmatrix}
 A & B \\
 C & D
\end{pmatrix}
\cdot
\begin{pmatrix}
 v_o \\
 i_o
\end{pmatrix}
\]

Maximum available power gain of a unilateral linear resistive two-port:

\[
P_{av,\text{max}} = \frac{1}{4AD}
\]