Structured Electronic Design
Principle of amplification
Principle of Amplification
Principle of Amplification

Modulation of power transfer from power source to the load by the signal source
Principle of Amplification

Modulation of power transfer from power source to the load by the signal source
Principle of Amplification

Modulation of power transfer from power source to the load by the signal source.
Principle of Amplification

Modulation of power transfer from power source to the load by the signal source

Modulation mechanism found in some passive elements
Principle of Amplification

Modulation of power transfer from power source to the load by the signal source

Modulation mechanism found in some passive elements
Principle of Amplification

Modulation of power transfer from power source to the load by the signal source

Modulation mechanism found in some passive elements

Trans-resistor with voltage supply source

Trans-resistor with current supply source
Principle of Amplification

Modulation of power transfer from power source to the load by the signal source

Modulation mechanism found in some passive elements
Design approach
Design approach

1. Find an operating mechanism that provides an available power gain > 1
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:

\[AD = BC \]
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:

\[
AD = BC \quad \frac{1}{4AD} > 1
\]
Design approach

1. Find an operating mechanism that provides an available power gain \(> 1 \)
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:
 \[
 AD = BC \quad \frac{1}{4AD} > 1
 \]

2. Study performance versus costs of basic solution
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:
 \[
 AD = BC \quad \frac{1}{4AD} > 1
 \]

2. Study performance versus costs of basic solution
 Biased single-device (transistor) amplifier stage suffers from:
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:
 \[AD = BC \quad \frac{1}{4AD} > 1 \]

2. Study performance versus costs of basic solution
 Biased single-device (transistor) amplifier stage suffers from:
 - noise addition
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:
 \[AD = BC \quad \frac{1}{4AD} > 1 \]

2. Study performance versus costs of basic solution
 Biased single-device (transistor) amplifier stage suffers from:
 - noise addition
 - inaccuracy
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:
 \[AD = BC \quad \frac{1}{4AD} > 1 \]

2. Study performance versus costs of basic solution
 Biased single-device (transistor) amplifier stage suffers from:
 - noise addition
 - inaccuracy
 - nonlinearity
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:
 \[AD = BC \quad \frac{1}{4AD} > 1 \]

2. Study performance versus costs of basic solution
 Biased single-device (transistor) amplifier stage suffers from:
 - noise addition
 - inaccuracy
 - nonlinearity
 - bandwidth limitation
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:
 \[AD = BC \quad \frac{1}{4AD} > 1 \]

2. Study performance versus costs of basic solution
 Biased single-device (transistor) amplifier stage suffers from:
 - noise addition
 - inaccuracy
 - nonlinearity
 - bandwidth limitation
 - device tolerances
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:
 \[AD = BC \quad \frac{1}{4AD} > 1 \]

2. Study performance versus costs of basic solution
 Biased single-device (transistor) amplifier stage suffers from:
 - noise addition
 - inaccuracy
 - nonlinearity
 - bandwidth limitation
 - device tolerances
 - temperature dependency
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:

\[
AD = BC \quad \frac{1}{4AD} > 1
\]

2. Study performance versus costs of basic solution
 Biased single-device (transistor) amplifier stage suffers from:
 - noise addition
 - inaccuracy
 - nonlinearity
 - bandwidth limitation
 - device tolerances
 - temperature dependency

3. Apply error-reduction techniques for improvement of performance-to-costs ratio
Design approach

1. Find an operating mechanism that provides an available power gain > 1
 a. Biased passive two-terminal devices:
 Negative small-signal resistance in the operating point
 b. Biased passive three-terminal or four-terminal devices:
 Unilateral transfer with available power gain in operating point exceeding unity:
 \[AD = BC \quad \frac{1}{4AD} > 1 \]

2. Study performance versus costs of basic solution
 Biased single-device (transistor) amplifier stage suffers from:
 - noise addition
 - inaccuracy
 - nonlinearity
 - bandwidth limitation
 - device tolerances
 - temperature dependency

3. Apply error-reduction techniques for improvement of performance-to-costs ratio