Structured Electronic Design

Quiz biasing techniques

Anton J.M. Montagne

Brute force

Brute force

Fix the relation between a branch voltage and current simply through insertion of a two-terminal element with the desired v-i relation in that branch

Brute force

Fix the relation between a branch voltage and current simply through insertion of a two-terminal element with the desired v-i relation in that branch

Compensation

Brute force

Fix the relation between a branch voltage and current simply through insertion of a two-terminal element with the desired v-i relation in that branch

Compensation

Reproduce the error at some location in a system

Brute force

Fix the relation between a branch voltage and current simply through insertion of a two-terminal element with the desired v-i relation in that branch

Compensation

Reproduce the error at some location in a system Subtract it from the signal at that location

Brute force

Fix the relation between a branch voltage and current simply through insertion of a two-terminal element with the desired v-i relation in that branch

Compensation

Reproduce the error at some location in a system Subtract it from the signal at that location

Negative feedback

Brute force

Fix the relation between a branch voltage and current simply through insertion of a two-terminal element with the desired v-i relation in that branch

Compensation

Reproduce the error at some location in a system Subtract it from the signal at that location

Negative feedback

Measure the response

Brute force

Fix the relation between a branch voltage and current simply through insertion of a two-terminal element with the desired v-i relation in that branch

Compensation

Reproduce the error at some location in a system Subtract it from the signal at that location

Negative feedback

Measure the response Compare it with the desired value

Brute force

Fix the relation between a branch voltage and current simply through insertion of a two-terminal element with the desired v-i relation in that branch

Compensation

Reproduce the error at some location in a system Subtract it from the signal at that location

Negative feedback

Measure the response Compare it with the desired value Nullify the difference

Brute force

Fix the relation between a branch voltage and current simply through insertion of a two-terminal element with the desired v-i relation in that branch

Compensation

Reproduce the error at some location in a system Subtract it from the signal at that location

Negative feedback

Measure the response Compare it with the desired value Nullify the difference

BSc course structured electronic design:

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

Deterioration of the noise performance

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

Deterioration of the noise performance Increase of power dissipation

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

Deterioration of the noise performance Increase of power dissipation Increase of energy storage

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

Deterioration of the noise performance Increase of power dissipation Increase of energy storage Deterioration of the overdrive recovery

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

Deterioration of the noise performance Increase of power dissipation Increase of energy storage Deterioration of the overdrive recovery

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

Deterioration of the noise performance Increase of power dissipation Increase of energy storage Deterioration of the overdrive recovery

Brute-force fixing of the gate voltage:

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

Deterioration of the noise performance Increase of power dissipation Increase of energy storage Deterioration of the overdrive recovery

Brute-force fixing of the gate voltage: Deterioration of the noise performance

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

Deterioration of the noise performance Increase of power dissipation Increase of energy storage Deterioration of the overdrive recovery

Brute-force fixing of the gate voltage: Deterioration of the noise performance

Brute-force fixing of the drain voltage for a given drain current:

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

Deterioration of the noise performance Increase of power dissipation Increase of energy storage Deterioration of the overdrive recovery

Brute-force fixing of the gate voltage: Deterioration of the noise performance

Brute-force fixing of the drain voltage for a given drain current:

___o Increase of power dissipation

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

Deterioration of the noise performance Increase of power dissipation Increase of energy storage Deterioration of the overdrive recovery

Brute-force fixing of the gate voltage: Deterioration of the noise performance

Brute-force fixing of the drain voltage for a given drain current:

____o Increase of power dissipation

AC coupling: insertion of a voltage level shift in series with the signal path through insertion of a capacitor:

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

Deterioration of the noise performance Increase of power dissipation Increase of energy storage Deterioration of the overdrive recovery

Brute-force fixing of the gate voltage: Deterioration of the noise performance

Brute-force fixing of the drain voltage
 for a given drain current:

____o Increase of power dissipation

AC coupling: insertion of a voltage level shift in series with the signal path through insertion of a capacitor:

Deterioration of start-up behavior and overdrive recovery

BSc course structured electronic design:

Insertion of impedances in series or in parallel with the signal path should be avoided:

Deterioration of the noise performance Increase of power dissipation Increase of energy storage Deterioration of the overdrive recovery

Brute-force fixing of the gate voltage: Deterioration of the noise performance

- Brute-force fixing of the drain voltage
 for a given drain current:
- ____o Increase of power dissipation

AC coupling: insertion of a voltage level shift in series with the signal path through insertion of a capacitor:

Deterioration of start-up behavior and overdrive recovery

Application of Compensation

Application of Compensation

Requires reproduction of the error

Application of Compensation

Requires reproduction of the error Limited improvement: imperfect reproduction (matching error):

Application of Compensation

Requires reproduction of the error Limited improvement: imperfect reproduction (matching error):

Needs to change with temperature to ensure a temperature-independent drain current

Application of Compensation

Requires reproduction of the error Limited improvement: imperfect reproduction (matching error):

Needs to change with temperature to ensure a temperature-independent drain current

Application of Compensation

Requires reproduction of the error Limited improvement: imperfect reproduction (matching error):

Needs to change with temperature to ensure a temperature-independent drain current

Automatic reduction of biasing errors

Automatic reduction of biasing errors

Only possible if frequency components of biasing errors and of signal do not overlap

Automatic reduction of biasing errors

Automatic reduction of biasing errors

Automatic reduction of biasing errors

Automatic reduction of biasing errors

At low frequencies: low impedance in parallel with the signal path

|Z| (log)

_1

 g_m

Some examples

Applied techniques

- 1. compensation
- 2. model-based biasing
- 3. brute force technique
- 4. negative feedback biasing
- 5. electronic self inductance

