Structured Electronic Design
Amplifiers: small-signal dynamic behavior
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Linear time-invariant dynamic systems

Modeling with linear differential equations with constant coefficients

Sum of a number ' 1 k Sum of a number
of derivatives of 2 i?_n Q. d y(t) — ~k=m bk d aj(t) of derivatives of
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Exponential functions retain their shape under differentiation and integration

Fourier: write signals as sum of imaginary
exponentials (finite energy signals only)

z(t) = 5= [0 X (jw) exp(jwt)dw

(c) 2020 A.J.M. Montagne 8



Linear time-invariant dynamic systems

Modeling with linear differential equations with constant coefficients
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Modeling with linear differential equations with constant coefficients
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Linear time-invariant dynamic systems

Modeling with linear differential equations with constant coefficients
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Linear time-invariant dynamic systems

Modeling with linear differential equations with constant coefficients
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Exponential functions retain their shape under differentiation and integration

Fourier: write signals as sum of imaginary Laplace: write sighals as sum of complex exponentials
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Poles and Zeros

Y (s) Sj’;.ig” bis”

X(s)  30iZ0 ais?

Transfer function: H(S) —
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Poles and Zeros
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Transfer function: H — — = .
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Poles and Zeros
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Poles and Zeros
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Transfer function: H — — k=0 .
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Nonzero output signal in the absence of an excitation.
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Poles and Zeros

. Y(s)  SIRETbysk
Transfer function: H — — Z=E=0 .
Poles are the solutions of the characteristic equation: :Z:g a;S

Stems from homogeneous differential equation:

T

~71=n .diy(t) o

Li=0 Wi dt?

Nonzero output signal in the absence of an excitation.

Result of energy storage in the system.

0

0
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Poles and Zeros

k=m k
Transfer function: H(s) — }22‘3 — yz::’“i_:% bks.
i—o @iS’

Poles are the solutions of the characteristic equation: :Z:g CZZ'Si — ()

: i
Stems from homogeneous differential equation: :2:8“ a; ddyigt) — ()

Nonzero output signal in the absence of an excitation.
Result of energy storage in the system.

Zeros are complex frequencies at which there is no signal transfer: Zzgl bk sk — ()
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Poles and Zeros
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Transfer function: — — Z=k=0 .
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Result of energy storage in the system.

. . . . k=m L
Zeros are complex frequencies at which there is no signal transfer: L—0) ka =0

Poles and zeros are real or pairs of complex conjugates.
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Pole-zero plots
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Pole-zero plots
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Impulse and step response
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Impulse and step response

Unit impulse response

A(t) = £~ {H(s)}
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Impulse and step response

Unit impulse response
h(t) = L7 {H(s)}

Unit step response

= [ h(t)dt = L7 {{H(s)}
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Impulse and step response
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