Structured Electronic Design Amplifiers: small-signal dynamic behavior

Modeling with linear differential equations with constant coefficients

Modeling with linear differential equations with constant coefficients

Sum of a number of derivatives of the response

_

Modeling with linear differential equations with constant coefficients

Sum of a number of derivatives of the response

$$\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = \sum_{k=0}^{k=m} b_k^{k=m} b_$$

 $b_k rac{d^k x(t)}{dt^k}$ Sum of a number of derivatives of the excitation

Modeling with linear differential equations with constant coefficients

Sum of a number	-i-n	$d^{i}u(t)$	-k-m
of derivatives of	$\sum \frac{1}{2} $	$L: \frac{u \ g(v)}{v}$	$=\sum_{n=1}^{n-n}$
the response		$^{\bullet\imath}$ dt^{\imath}	$\angle k = 0$

Exponential functions retain their shape under differentiation and integration

 $b_k rac{d^k x(t)}{dt^k}$ Sum of a number of derivatives of the excitation

Modeling with linear differential equations with constant coefficients

Sum of a number of derivatives of the response

$$\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = \sum_{k=0}^{k=m} b_i$$

Exponential functions retain their shape under differentiation and integration

Fourier: write signals as sum of imaginary exponentials (finite energy signals only)

 $b_k rac{d^k x(t)}{dt^k}$ Sum of a number of derivatives of the excitation

Modeling with linear differential equations with constant coefficients

 $\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = \sum_{k=0}^{k=m} b_k \frac{d^k x(t)}{dt^k} \quad \text{Sum of a number of the excitation}} \quad \text{the excitation}$ Sum of a number of derivatives of the response

Exponential functions retain their shape under differentiation and integration

Fourier: write signals as sum of imaginary exponentials (finite energy signals only)

 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \exp(j\omega t) d\omega$

Sum of a number

Modeling with linear differential equations with constant coefficients

 $\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = \sum_{k=0}^{k=m} b_k \frac{d^k x(t)}{dt^k} \quad \text{Sum of a number of derivatives of the excitation}}$ Sum of a number of derivatives of the response

Exponential functions retain their shape under differentiation and integration

Fourier: write signals as sum of imaginary exponentials (finite energy signals only)

Laplace: write signals as sum of complex exponentials

 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \exp(j\omega t) d\omega$

Modeling with linear differential equations with constant coefficients

Sum of a number $\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = \sum_{k=0}^{k=m} b_i$ of derivatives of the response

Exponential functions retain their shape under differentiation and integration

Laplace: write signals as sum of complex exponentials Fourier: write signals as sum of imaginary exponentials (finite energy signals only)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \exp(j\omega t) d\omega$$
 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \exp(j\omega t) d\omega$

7	$d^k x(t)$	
k	dt^k	

Sum of a number of derivatives of the excitation

$\frac{1}{2\pi i} \oint_{\sigma - i\omega}^{\sigma + j\omega} X(s) \exp(st) ds$

Modeling with linear differential equations with constant coefficients

Sum of a number $\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = \sum_{k=0}^{k=m} b_i$ of derivatives of the response

Exponential functions retain their shape under differentiation and integration

Fourier: write signals as sum of imaginary Laplace: write signals as sum of complex exponentials exponentials (finite energy signals only)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \exp(j\omega t) d\omega \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \exp(j\omega t) d\omega$$

Differential equation changes into algebraic equation

7	$d^k x(t)$
k	$\overline{-dt^k}$

Sum of a number of derivatives of the excitation

$\frac{1}{2\pi i} \oint_{\sigma = i\omega}^{\sigma + j\omega} X(s) \exp(st) ds$

Modeling with linear differential equations with constant coefficients

Sum of a number $\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = \sum_{k=0}^{k=m} b_i$ of derivatives of the response

Exponential functions retain their shape under differentiation and integration

Fourier: write signals as sum of imaginary Laplace: write signals as sum of complex exponentials exponentials (finite energy signals only)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \exp(j\omega t) d\omega \qquad x(t) = \frac{1}{2\pi j} \oint_{\sigma-j\omega}^{\sigma+j\omega} X(s) \exp(st) ds$$

Differential equation changes into algebraic equation

Transfer function relates response of each exponential to excitation of corresponding exponential

7	$d^k x(t)$
k	$\overline{-dt^k}$

Modeling with linear differential equations with constant coefficients

Sum of a number $\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = \sum_{k=0}^{k=m} b_i$ of derivatives of the response

Exponential functions retain their shape under differentiation and integration

Fourier: write signals as sum of imaginary Laplace: write signals as sum of complex exponentials exponentials (finite energy signals only)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \exp(j\omega t) d\omega \qquad x(t) = \frac{1}{2\pi j} \oint_{\sigma-j\omega}^{\sigma+j\omega} X(s) \exp(st) ds$$

Differential equation changes into algebraic equation

Transfer function relates response of each exponential to excitation of corresponding exponential

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{\sum_{k=0}^{k=m} b_k(j\omega)^k}{\sum_{i=0}^{i=n} a_i(j\omega)^i}$$

7	$d^k x(t)$
k	$\overline{-dt^k}$

Modeling with linear differential equations with constant coefficients

Sum of a number $\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = \sum_{k=0}^{k=m} b_i$ of derivatives of the response

Exponential functions retain their shape under differentiation and integration

Fourier: write signals as sum of imaginary Laplace: write signals as sum of complex exponentials exponentials (finite energy signals only)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \exp(j\omega t) d\omega \qquad x(t) = \frac{1}{2\pi j} \oint_{\sigma-j\omega}^{\sigma+j\omega} X(s) \exp(st) ds$$

Differential equation changes into algebraic equation

Transfer function relates response of each exponential to excitation of corresponding exponential

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{\sum_{k=0}^{k=m} b_k(j\omega)^k}{\sum_{i=0}^{i=n} a_i(j\omega)^i} \qquad H(s) =$$

7	$d^k x(t)$
k	dt^k

$$\frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{k=m} b_k s^k}{\sum_{i=0}^{i=n} a_i s^i}$$

Modeling with linear differential equations with constant coefficients

Sum of a number $\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = \sum_{k=0}^{k=m} b_i$ of derivatives of the response

Exponential functions retain their shape under differentiation and integration

Fourier: write signals as sum of imaginary Laplace: write signals as sum of complex exponentials exponentials (finite energy signals only)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \exp(j\omega t) d\omega \qquad x(t) = \frac{1}{2\pi j} \oint_{\sigma-j\omega}^{\sigma+j\omega} X(s) \exp(st) ds$$

Differential equation changes into algebraic equation

Transfer function relates response of each exponential to excitation of corresponding exponential

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{\sum_{k=0}^{k=m} b_k(j\omega)^k}{\sum_{i=0}^{i=n} a_i(j\omega)^i} \qquad H(s) =$$

7	$d^k x(t)$
k	dt^k

$$\frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{k=m} b_k s^k}{\sum_{i=0}^{i=n} a_i s^i}$$

Transfer function:

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{k=m} b_k s^k}{\sum_{i=0}^{i=n} a_i s^i}$$

(c) 2020 A.J.M. Montagne 17

Transfer function:
$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{k=m} b_k s^k}{\sum_{i=0}^{i=n} a_i s^i}$$

Poles are the solutions of the characteristic equation: $\sum_{i=0}^{i=n} a_i s^i = 0$

Transfer function:
$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{k=m} b_k s^k}{\sum_{i=0}^{i=n} a_i s^i}$$

Poles are the solutions of the characteristic equation: $\sum_{i=0}^{i=n} a_i s^i = 0$

Stems from homogeneous differential equation: $\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = 0$

$\sum_{i=0}^{n} a_i s^i = 0$ $a_i \frac{d^i y(t)}{dt^i} = 0$

Transfer function:
$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{k=m} b_k s^k}{\sum_{i=0}^{i=n} a_i s^i}$$

Poles are the solutions of the characteristic equation: $\sum_{i=0}^{i=n} a_i s^i = 0$

Stems from homogeneous differential equation: $\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = 0$

Nonzero output signal in the absence of an excitation.

$\sum_{i=0}^{n} a_i s^i = 0$ $a_i \frac{d^i y(t)}{dt^i} = 0$

Transfer function:
$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{k=m} b_k s^k}{\sum_{i=0}^{i=n} a_i s^i}$$

Poles are the solutions of the characteristic equation: $\sum_{i=0}^{i=n} a_i s^i = 0$

Stems from homogeneous differential equation: $\sum_{i=0}^{i=n} a_i \frac{d^i y(t)}{dt^i} = 0$

Nonzero output signal in the absence of an excitation.

Result of energy storage in the system.

$\sum_{i=0}^{n} a_i s^i = 0$ $a_i \frac{d^i y(t)}{dt^i} = 0$

Transfer function:
$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{k=m} b_k s^k}{\sum_{i=0}^{i=n} a_i s^i}$$

Poles are the solutions of the characteristic equation: $\sum_{i=0}^{i} a_i$
Stems from homogeneous differential equation: $\sum_{i=0}^{i=n} a_i$
Nonzero output signal in the absence of an excitation.
Result of energy storage in the system.

Zeros are complex frequencies at which there is no signal transfer: $\sum_{k=0}^{k=m} b_k s^k = 0$

$\sum_{i=0}^{i=n} a_i s^i = 0$ $a_i \frac{d^i y(t)}{dt^i} = 0$

Transfer function:
$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{k=m} b_k s^k}{\sum_{i=0}^{i=n} a_i s^i}$$

Poles are the solutions of the characteristic equation: $\sum_{i=0}^{i} a_i$
Stems from homogeneous differential equation: $\sum_{i=0}^{i=n} a_i$
Nonzero output signal in the absence of an excitation.
Result of energy storage in the system.

Zeros are complex frequencies at which there is no signal transfer: $\sum_{k=0}^{k=m} b_k s^k = 0$

Poles and zeros are real or pairs of complex conjugates.

$a_i \stackrel{i=n}{=} a_i s^i = 0$ $a_i \frac{d^i y(t)}{dt^i} = 0$

Transfer function:
$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{k=m} b_k s^k}{\sum_{i=0}^{i=n} a_i s^i}$$
Poles are the solutions of the characteristic equation: $\sum_{i=0}^{i} a_i$ Stems from homogeneous differential equation: $\sum_{i=0}^{i=n} a_i$ Nonzero output signal in the absence of an excitation.Result of energy storage in the system.

Zeros are complex frequencies at which there is no signal transfer: $\sum_{k=0}^{k=m} b_k s^k = 0$

Poles and zeros are real or pairs of complex conjugates.

$a_i \stackrel{i=n}{=} a_i s^i = 0$ $a_i \frac{d^i y(t)}{dt^i} = 0$

$$\arg\{H(j\omega)\} = \arg b_m - \arg a_n + \sum_{k=0}^{k=m} \arg(j\omega)$$

$$\arg\{H(j\omega)\} = \arg b_m - \arg a_n + \sum_{k=0}^{k=m} \arg(j\omega)$$

Unit impulse response $h(t) = \mathcal{L}^{-1} \left\{ H(s) \right\}$

Unit impulse response $h(t) = \mathcal{L}^{-1} \left\{ H(s) \right\}$

Unit step response $a(t) = \int h(t)dt = \mathcal{L}^{-1}\left\{\frac{1}{s}H(s)\right\}$

Unit impulse response $h(t) = \mathcal{L}^{-1} \left\{ H(s) \right\}$

Unit step response $a(t) = \int h(t)dt = \mathcal{L}^{-1}\left\{\frac{1}{s}H(s)\right\}$

Unit impulse response $h(t) = \mathcal{L}^{-1} \left\{ H(s) \right\}$

Unit step response $a(t) = \int h(t)dt = \mathcal{L}^{-1}\left\{\frac{1}{s}H(s)\right\}$

Unit impulse response $h(t) = \mathcal{L}^{-1} \{ H(s) \}$ Unit step response

 $a(t) = \int h(t)dt = \mathcal{L}^{-1}\left\{\frac{1}{s}H(s)\right\}$

$h(t) = \sum_{i=1}^{n} \sum_{k=0}^{\ell-1} A_{i,k} t^{k} \exp p_{i} t$ ℓ : number of occurrences of p_i $A_{i,k}$: real constant stable: $\operatorname{Re}(p_i) < 0 \forall i$

Unit impulse response
$$h(t) = \sum$$
 $h(t) = \mathcal{L}^{-1} \{H(s)\}$ ℓ : nullUnit step response $A_{i,k}$:

$$a(t) = \int h(t)dt = \mathcal{L}^{-1}\left\{\frac{1}{s}H(s)\right\} \quad \text{stabl}$$

$\sum_{i=1}^{n} \sum_{k=0}^{\ell-1} A_{i,k} t^k \exp p_i t$ The imper of occurrences of p_i real constant

le: $\operatorname{Re}(p_i) < 0 \,\forall i$

