Structured Electronic Design

EE3C11

Amplifiers: voltage and current drive capability

Anton J.M. Montagne

Signal excursions limited by:

Signal excursions limited by

Power supply voltages

Signal excursions limited by

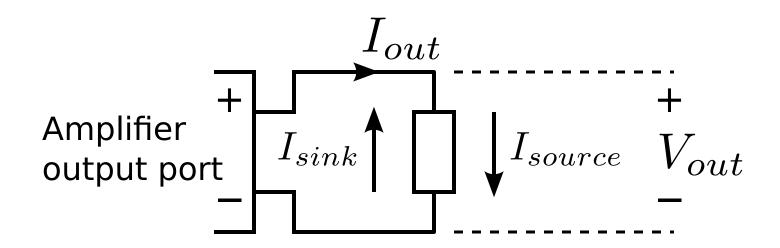
Power supply voltages

Breakdown mechanism

Signal excursions limited by

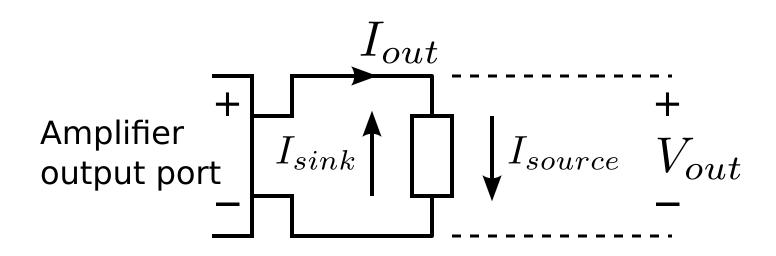
Power supply voltages

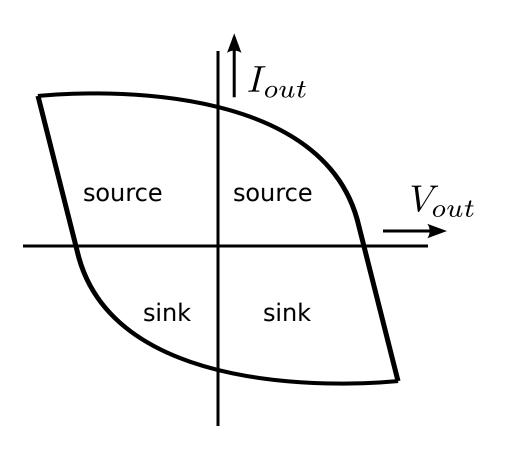
Breakdown mechanism


Circuit protection mechanism

Signal excursions limited by

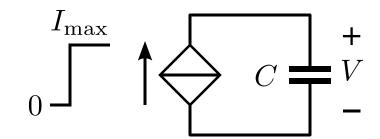
Power supply voltages


Breakdown mechanism


Circuit protection mechanism

Signal excursions limited by

Power supply voltages
Breakdown mechanism
Circuit protection mechanism



Limitation of the rate of change of the signal

Limitation of the rate of change of the signal

Signal current limitation and capacitance in parallel with the signal path

$$\frac{dV}{dt}\Big|_{\max} = \frac{I_{\max}}{C}$$

Limitation of the rate of change of the signal

Signal current limitation and capacitance in parallel with the signal path

$$\left. \frac{dV}{dt} \right|_{\max} = \frac{I_{\max}}{C}$$

$$\begin{array}{c}
I_{\text{max}} \\
0
\end{array}$$

$$\frac{dI}{dt}\Big|_{\max} = \frac{V_{\max}}{L}$$

$$V_{\max}$$
 + I

Limitation of the rate of change of the signal

Signal current limitation and capacitance in parallel with the signal path

$$\frac{dV}{dt}\Big|_{\max} = \frac{I_{\max}}{C}$$

$$\begin{array}{c}
I_{\text{max}} \\
0
\end{array}$$

$$\frac{dI}{dt}\Big|_{\max} = \frac{V_{\max}}{L}$$

$$V_{\max}$$
 + I

Limitation of the full-power bandwidth

Limitation of the rate of change of the signal

Signal current limitation and capacitance in parallel with the signal path

$$\frac{dV}{dt}\Big|_{\max} = \frac{I_{\max}}{C}$$

$$\begin{array}{c}
I_{\text{max}} \\
0
\end{array}$$

$$\frac{dI}{dt}\Big|_{\max} = \frac{V_{\max}}{L}$$

$$V_{\max}$$
 + I

Limitation of the full-power bandwidth

Maximum frequency of a sinusoidal signal of which:

Limitation of the rate of change of the signal

Signal current limitation and capacitance in parallel with the signal path

$$\frac{dV}{dt}\Big|_{\max} = \frac{I_{\max}}{C}$$

$$\begin{array}{c}
I_{\text{max}} \\
0
\end{array}$$

$$\frac{dI}{dt}\Big|_{\max} = \frac{V_{\max}}{L}$$

$$0 \xrightarrow{V_{\text{max}}} + C$$

Limitation of the full-power bandwidth

Maximum frequency of a sinusoidal signal of which:

peak-to-peak value equals maximum static signal swing

Limitation of the rate of change of the signal

Signal current limitation and capacitance in parallel with the signal path

$$\frac{dV}{dt}\Big|_{\max} = \frac{I_{\max}}{C}$$

$$\begin{array}{c|c}
I_{\text{max}} \\
0
\end{array}$$

$$\frac{dI}{dt}\Big|_{\max} = \frac{V_{\max}}{L}$$

$$V_{\max}$$
 + I

Limitation of the full-power bandwidth

Maximum frequency of a sinusoidal signal of which:

peak-to-peak value equals maximum static signal swing

maximum of time derivative equals slew-rate limitation

Limitation of the rate of change of the signal

Signal current limitation and capacitance in parallel with the signal path

$$\frac{dV}{dt}\Big|_{\max} = \frac{I_{\max}}{C}$$

$$\begin{array}{c|c}
I_{\text{max}} \\
0
\end{array}$$

Signal voltage limitation and inductance in series with the signal path

$$\frac{dI}{dt}\Big|_{\max} = \frac{V_{\max}}{L}$$

$$V_{\max}$$
 + I

Limitation of the full-power bandwidth

Maximum frequency of a sinusoidal signal of which:

peak-to-peak value equals maximum static signal swing maximum of time derivative equals slew-rate limitation

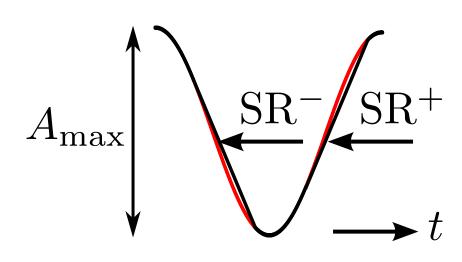
$$f_{\rm fullPower} = \frac{{
m SR}}{\pi A_{\rm max}} - {
m Maximum peak-to-peak signal swing}$$
 Slew-rate limitation

Limitation of the rate of change of the signal

Signal current limitation and capacitance in parallel with the signal path

$$\frac{dV}{dt}\Big|_{\max} = \frac{I_{\max}}{C}$$

$$\begin{array}{c}
I_{\text{max}} \\
0
\end{array}$$


$$\frac{dI}{dt}\Big|_{\max} = \frac{V_{\max}}{L}$$

$$\begin{array}{c}
V_{\text{max}} \\
0
\end{array}$$

Limitation of the full-power bandwidth

Maximum frequency of a sinusoidal signal of which:

peak-to-peak value equals maximum static signal swing maximum of time derivative equals slew-rate limitation

