Structured Electronic Design

Balancing: push-pull stage

Anton J.M. Montagne

Complementary-parallel biased CS stages

Complementary-parallel biased CS stages

Complementary-parallel biased CS stages

Complementary-parallel biased CS stages

Common-mode currents are defined by the bias voltages and the device characteristics

Complementary-parallel biased CS stages

Common-mode currents are defined by the bias voltages and the device characteristics

(VgsN) (3) (4) + E2 (4) V2 (4) V2 (10) I12 (10) I2 (10)

Class A operation:

Sink and source devices conduct during push and pull phase

Class A operation:

Sink and source devices conduct during push and pull phase

Class B operation:

Sink device conducts during pull phase Source device conducts during push phase

Class A operation:

Class B operation:

Class AB operation:

Sink and source devices conduct during push and pull phase

Between A and B: overlap

- Sink device conducts during pull phase Source device conducts during push phase

Class B operation:

Class AB operation:

Class C operation:

Sink and source devices conduct during push and pull phase

Between A and B: overlap

Dead zone

- Sink device conducts during pull phase Source device conducts during push phase

Class A operation:	Sink ar
Class B operation:	Sink de Source
Class AB operation:	Betwee

Class C operation:

Dead zone

nd source devices conduct during push and pull phase

- evice conducts during pull phase device conducts during push phase
- en A and B: overlap

Behavioral modifications resulting from (anti)parallel connection of linear two-ports

Behavioral modifications resulting from (anti)parallel connection of linear two-ports

Behavioral modifications resulting from (anti)parallel connection of linear two-ports

Small-signal diagram push-pull stage

Behavioral modifications resulting from (anti)parallel connection of linear two-ports

Small-signal diagram push-pull stage

Behavioral modifications resulting from (anti)parallel connection of linear two-ports

Small-signal diagram push-pull stage

Behavioral modifications resulting from (anti)parallel connection of linear two-ports

Small-signal diagram push-pull stage

Behavioral modifications resulting from (anti)parallel connection of linear two-ports

Small-signal diagram push-pull stage

 $c_{gs}, c_{gd}, c_{ds}, g_m$ and g_o are the small-signal parameters of the CS stage.

Behavioral modifications resulting from (anti)parallel connection of linear two-ports

Small-signal diagram push-pull stage

 $c_{gs}, c_{gd}, c_{ds}, g_m$ and g_o are the small-signal parameters of the CS stage.

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Result:

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Result:

 $S_v = \frac{1}{4} \left(S_{Vn1} + S_{Vn2} \right)$

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Result:

 $S_v = \frac{1}{4} \left(S_{Vn1} + S_{Vn2} \right)$ $S_i = S_{In1} + S_{In2}$

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Result:

$$S_{v} = \frac{1}{4} \left(S_{Vn1} + S_{Vn2} \right)$$

$$S_{i} = S_{In1} + S_{In2}$$

Conclusion:

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Result:

 $S_v = \frac{1}{4} \left(S_{Vn1} + S_{Vn2} \right)$ $S_i = S_{In1} + S_{In2}$

Conclusion: Equivalent input noise sources of a push-pull stage equal those of of a single CS stage if:

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Result:

 $S_v = \frac{1}{4} \left(S_{Vn1} + S_{Vn2} \right)$ $S_i = S_{In1} + S_{In2}$

Conclusion: Equivalent input noise sources of a push-pull stage equal those of of a single CS stage if:

> Width and drain current of the transistors of the differential pair are half the values of those of the single CS stage

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Result:

 $S_v = \frac{1}{4} \left(S_{Vn1} + S_{Vn2} \right)$ $S_i = S_{In1} + S_{In2}$

Conclusion: Equivalent input noise sources of a push-pull stage equal those of of a single CS stage if:

> Width and drain current of the transistors of the differential pair are half the values of those of the single CS stage

Same performance: equal area, equal current (complementary devices)

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Result:

 $S_v = \frac{1}{4} \left(S_{Vn1} + S_{Vn2} \right)$ $S_i = S_{In1} + S_{In2}$

Conclusion: Equivalent input noise sources of a push-pull stage equal those of of a single CS stage if:

> Width and drain current of the transistors of the differential pair are half the values of those of the single CS stage

Same performance: equal area, equal current (complementary devices) Unfortunately NMOS and PMOS devices are not fully complementary

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Result:

 $S_v = \frac{1}{4} \left(S_{Vn1} + S_{Vn2} \right)$ $S_i = S_{In1} + S_{In2}$

Conclusion: Equivalent input noise sources of a push-pull stage equal those of of a single CS stage if:

> Width and drain current of the transistors of the differential pair are half the values of those of the single CS stage

Same performance: equal area, equal current (complementary devices) Unfortunately NMOS and PMOS devices are not fully complementary Carrier mobility in PMOS devices a factor 4 times lower

Behavioral modifications resulting from (anti)-parallel connection of linear two-ports

Result:

 $S_v = \frac{1}{4} \left(S_{Vn1} + S_{Vn2} \right)$ $S_i = S_{In1} + S_{In2}$

Conclusion: Equivalent input noise sources of a push-pull stage equal those of of a single CS stage if:

> Width and drain current of the transistors of the differential pair are half the values of those of the single CS stage

Same performance: equal area, equal current (complementary devices) Unfortunately NMOS and PMOS devices are not fully complementary Carrier mobility in PMOS devices a factor 4 times lower

Push-pull stage SLiCAP model

SLiCAP subcircuit for this symbol: CMOS18PN