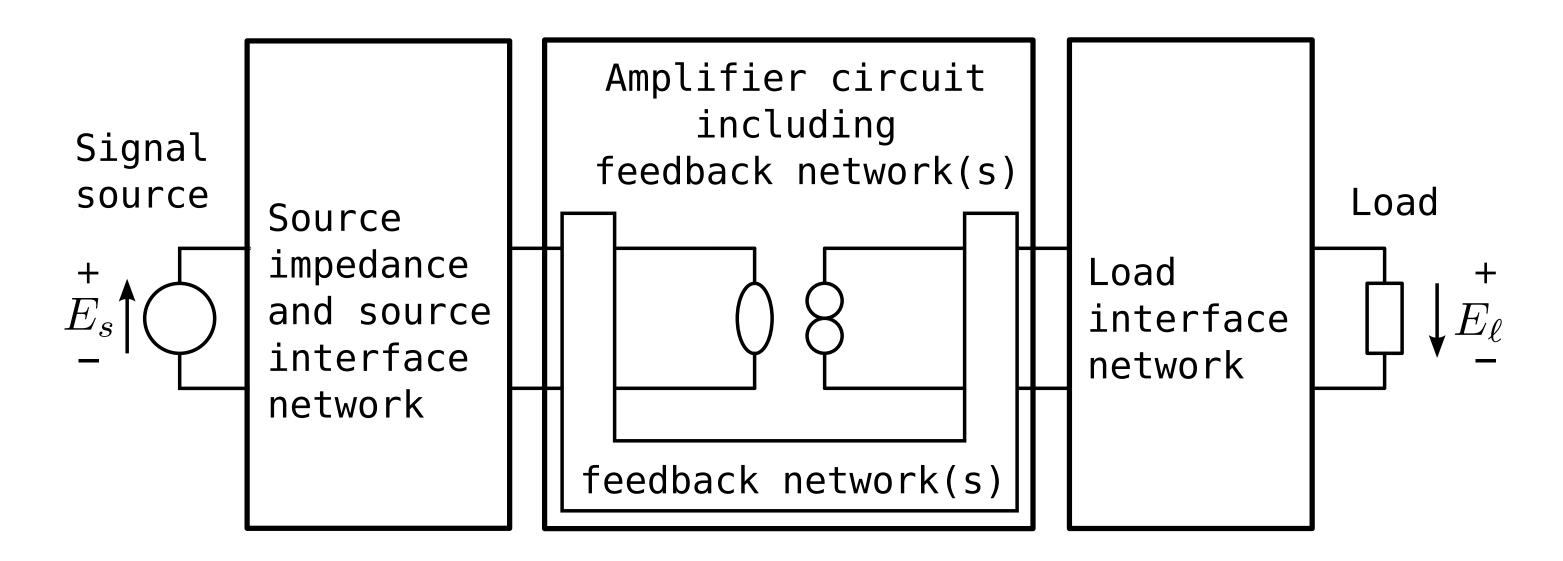
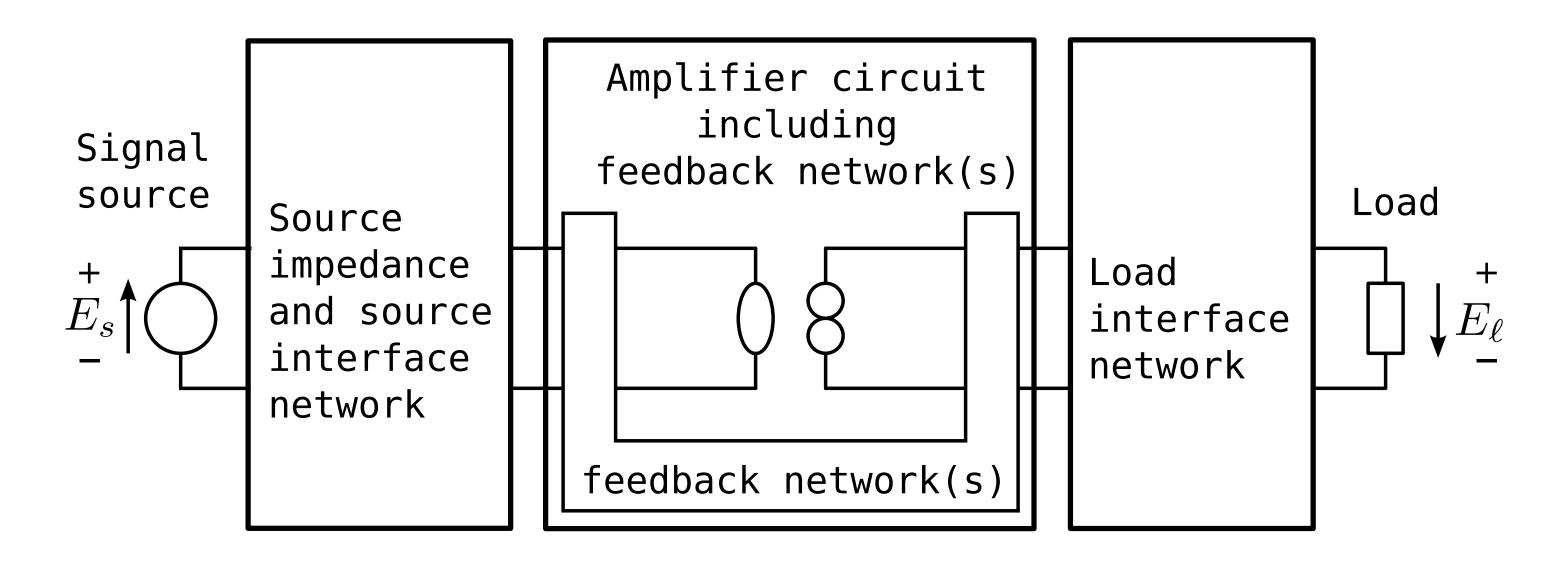
Structured Electronic Design

Noise Design of Input Stage MOS in Feedback Amplifiers

Anton J.M. Montagne

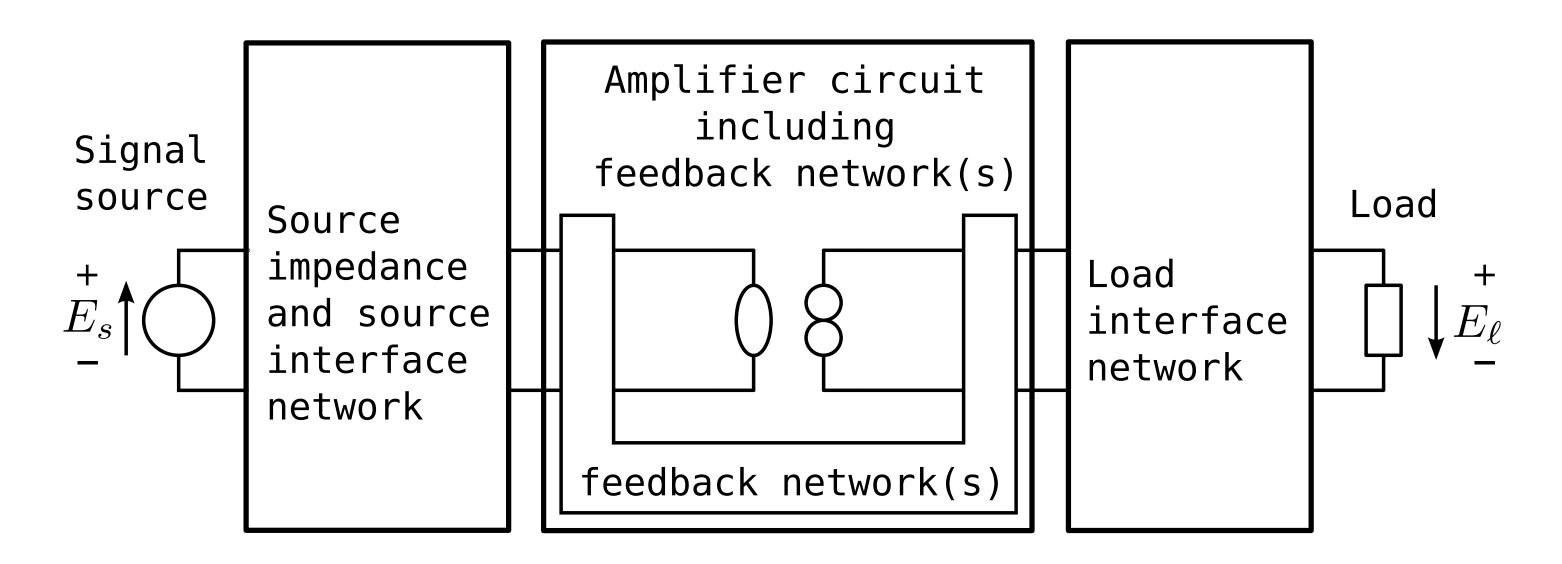


Known at the start of the controller's noise design



Known at the start of the controller's noise design

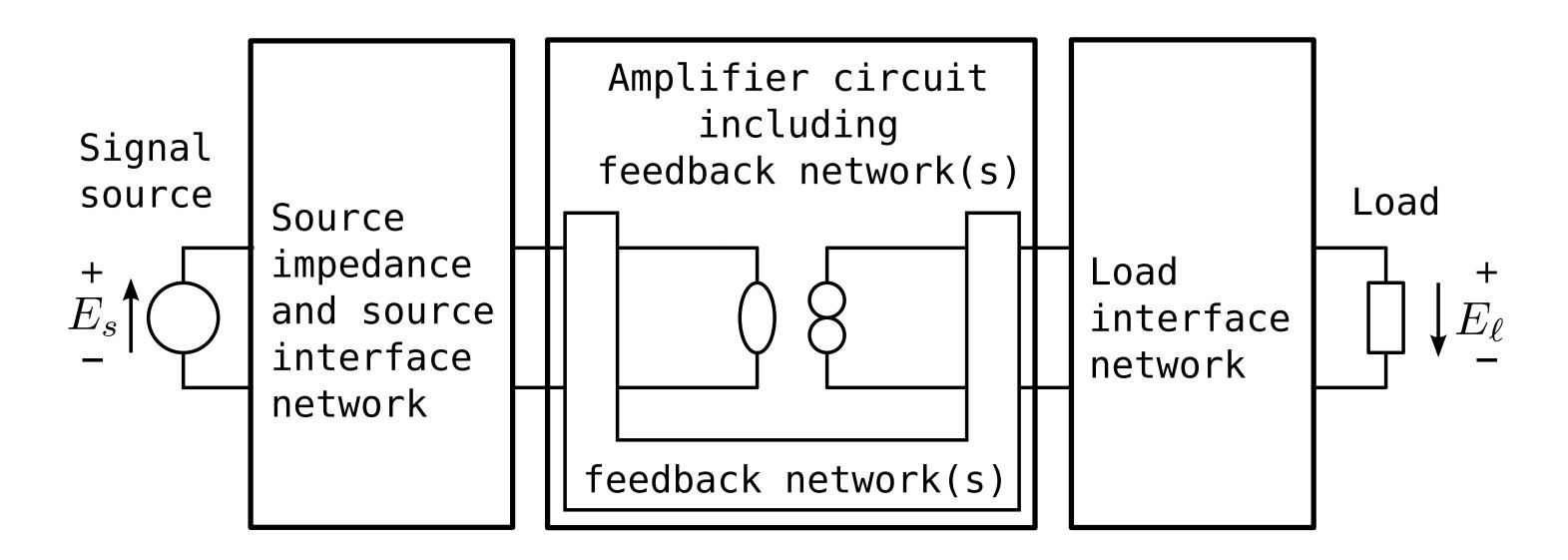
Source impedance



Known at the start of the controller's noise design

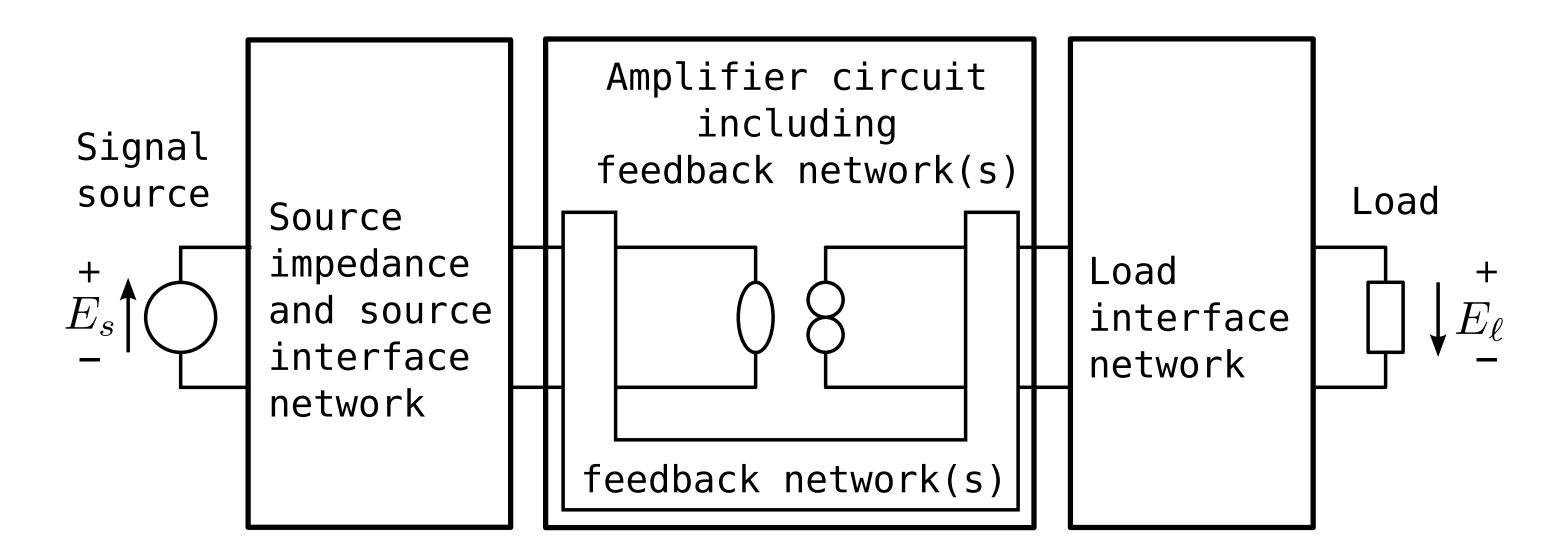
Source impedance

Source interface network



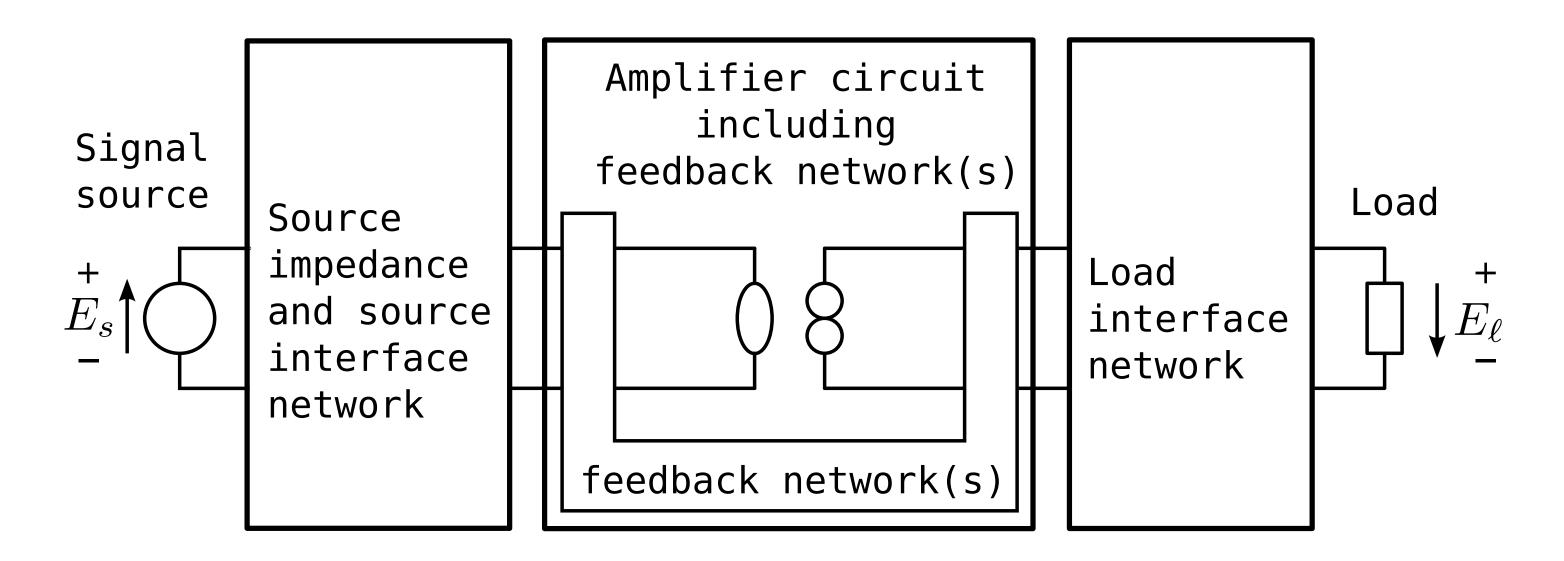
Known at the start of the controller's noise design

Source impedance Load impedance Source interface network



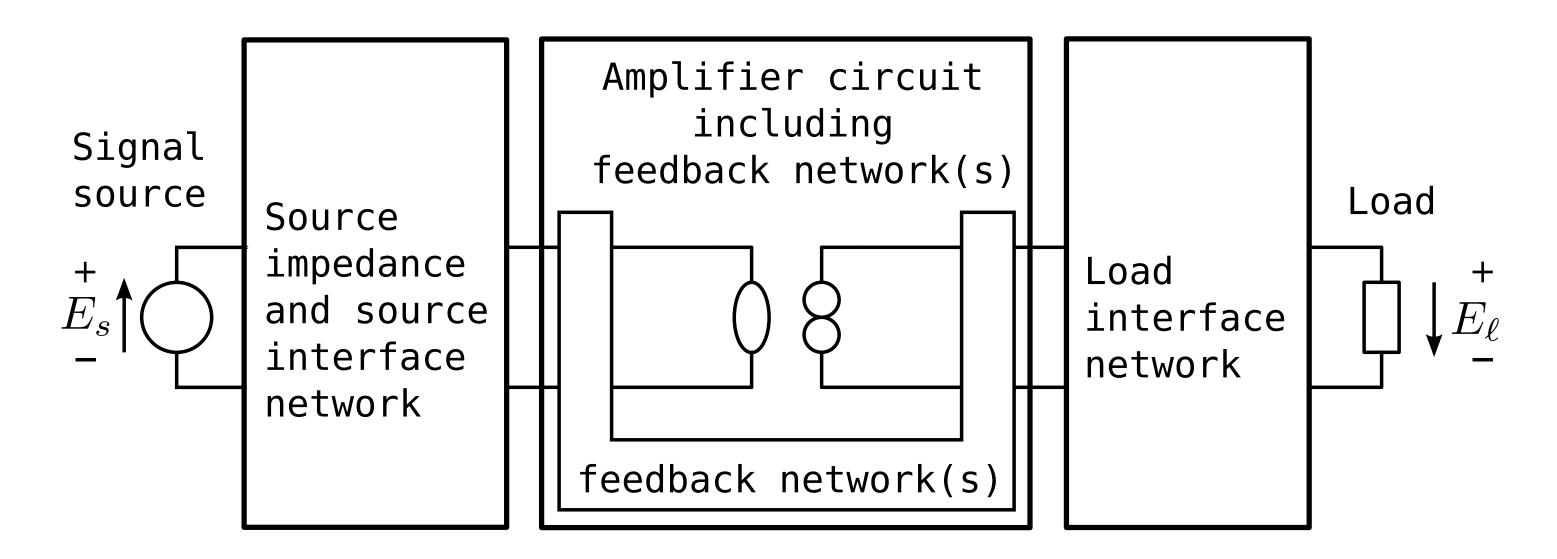
Known at the start of the controller's noise design

Source impedance Load impedance Source interface network Load interface network



Known at the start of the controller's noise design

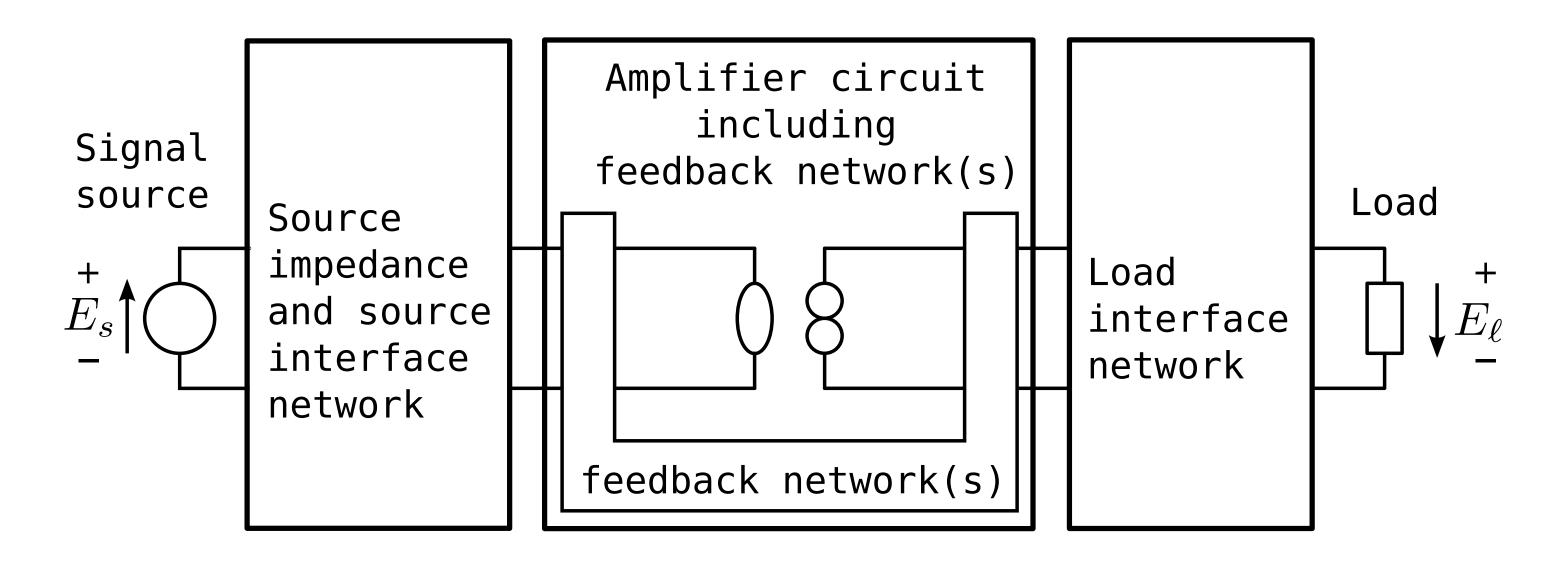
Source impedance Load impedance Feedback network(s) Source interface network Load interface network



Known at the start of the controller's noise design

Source impedance Load impedance Feedback network(s)

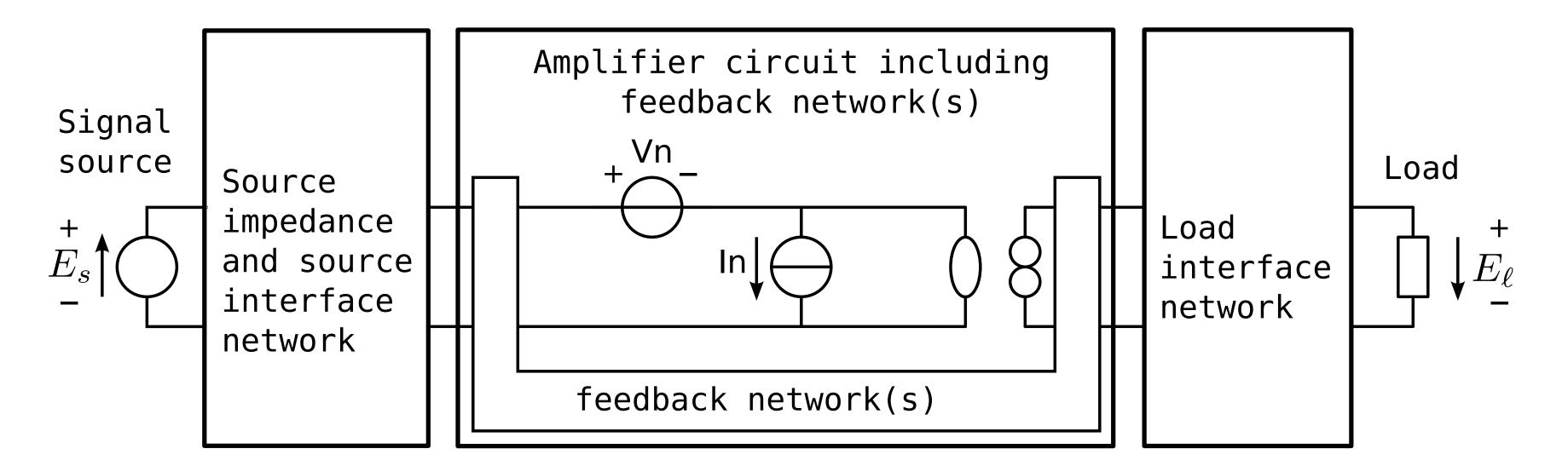
Source interface network Load interface network Output noise weighting function

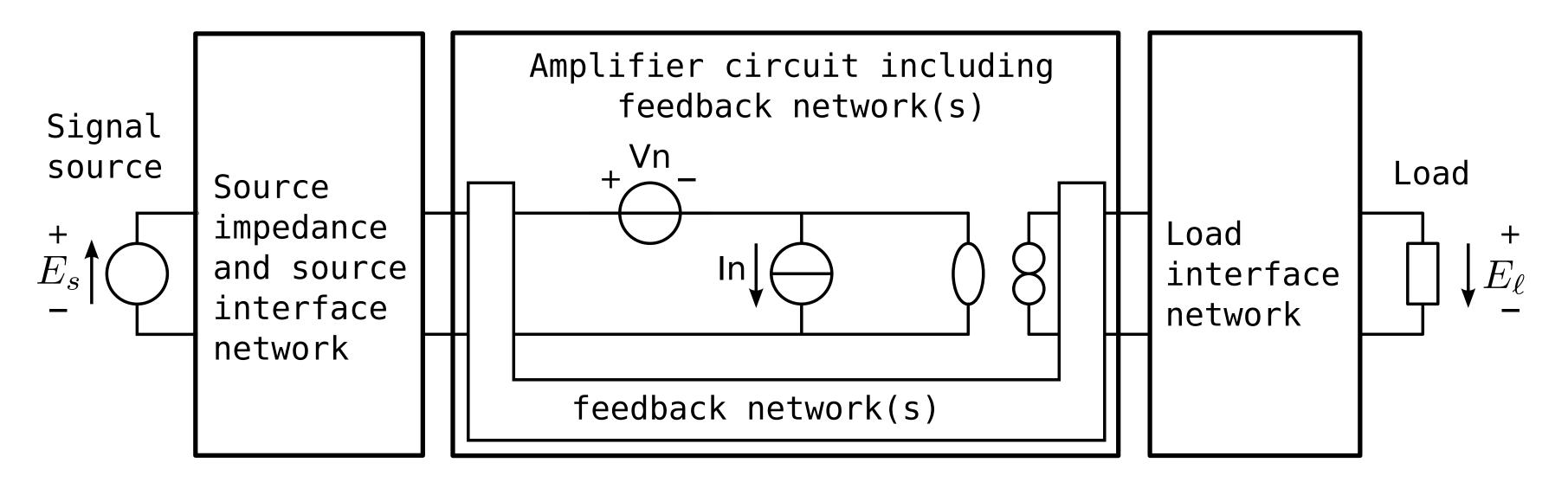


Known at the start of the controller's noise design

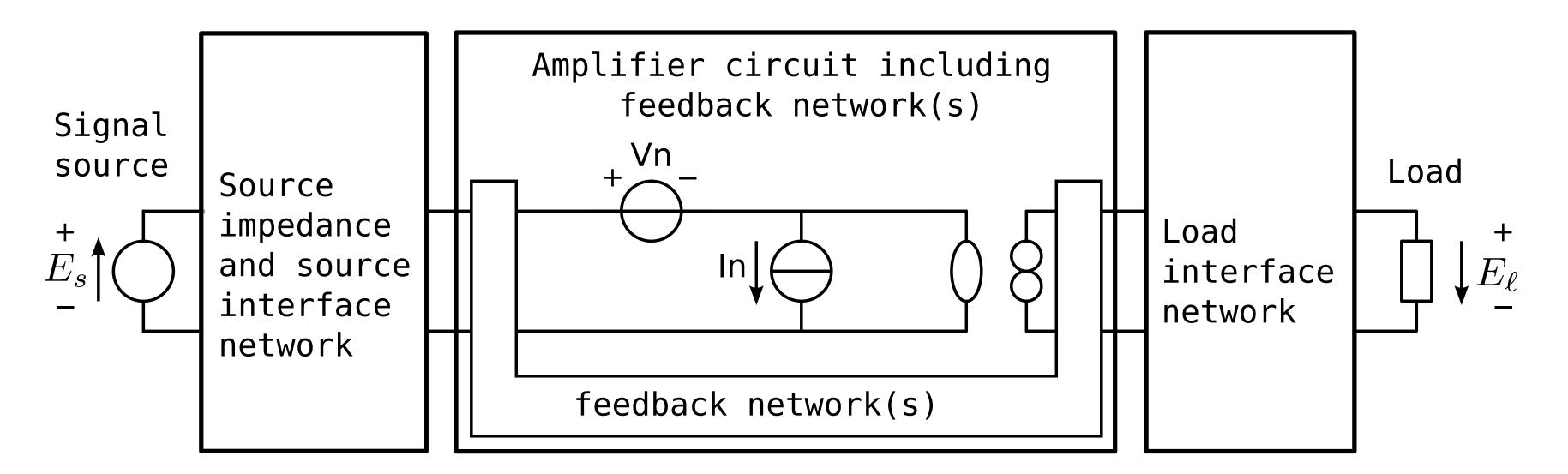
Source impedance Load impedance Feedback network(s)

Source interface network Load interface network Output noise weighting function



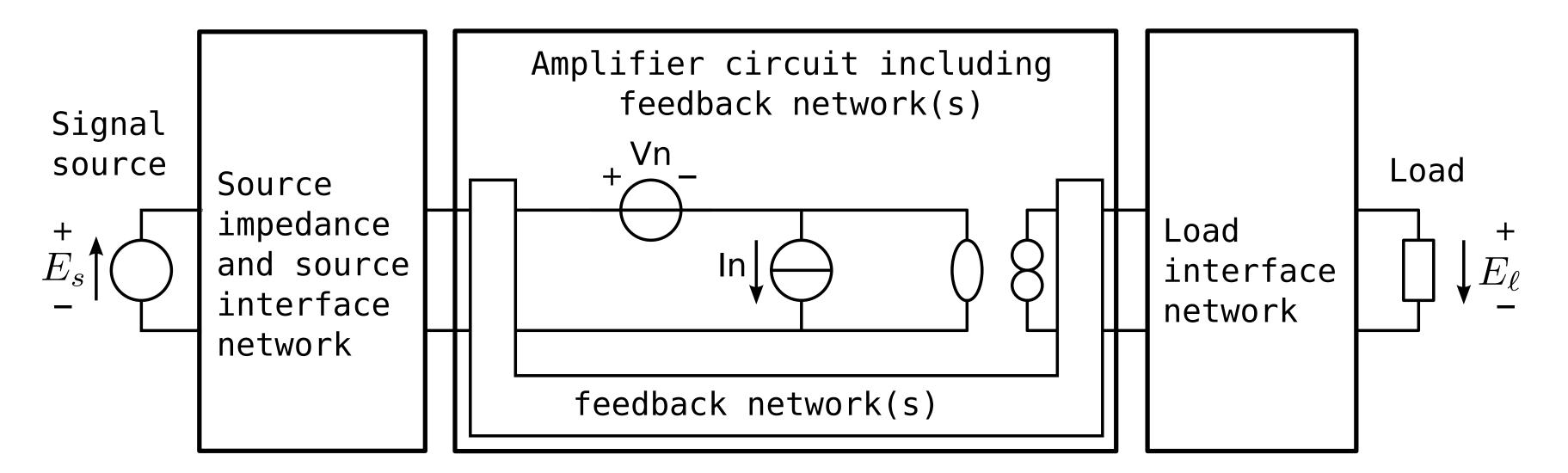


 $H_v(f)$: Transfer function from V_n to the output noise e_{ℓ_n}



 $H_v(f)$: Transfer function from V_n to the output noise e_{ℓ_n}

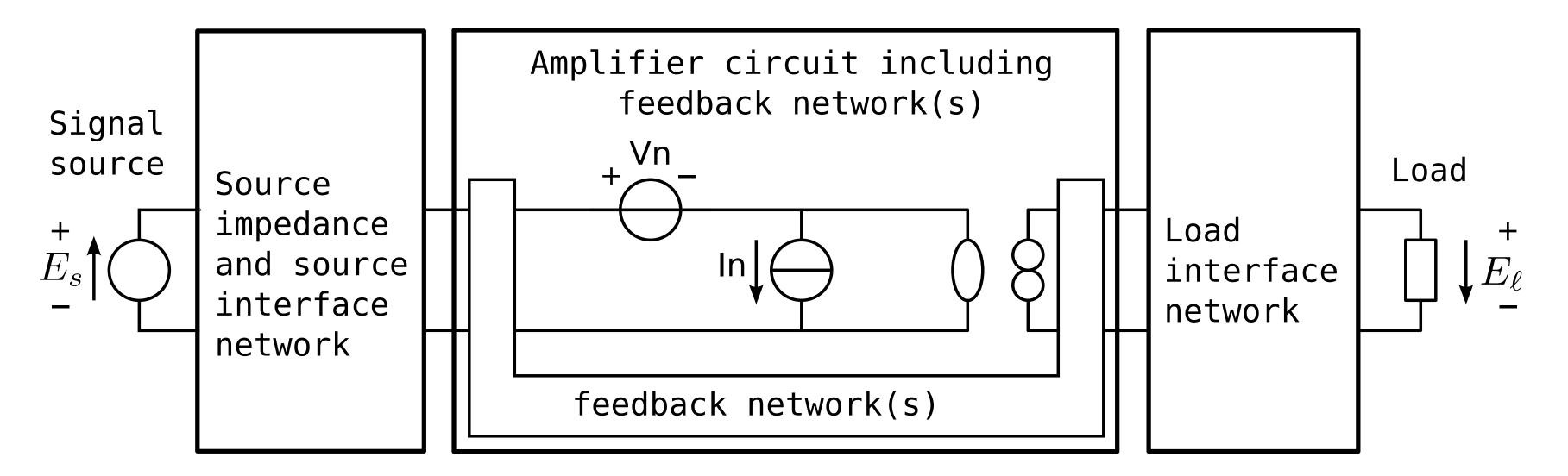
 $H_i(f)$: Transfer function from I_n to the output noise e_{ℓ_n}



 $H_v(f)$: Transfer function from V_n to the output noise e_{ℓ_n}

 $H_i(f)$: Transfer function from I_n to the output noise e_{ℓ_n}

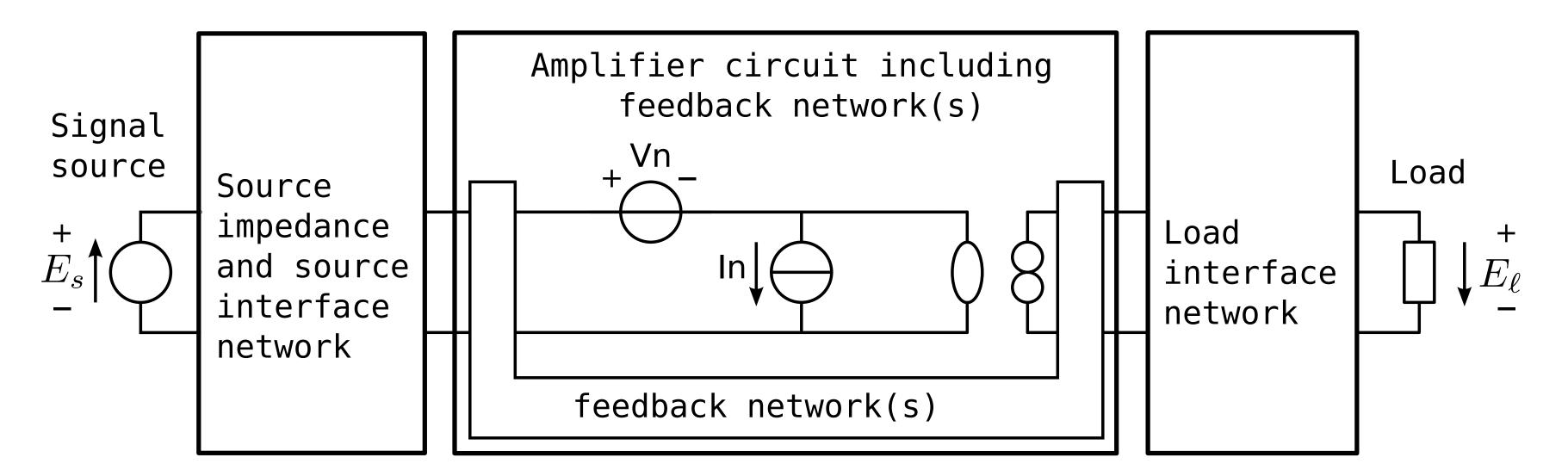
 $\frac{H_i(f)}{H_v(f)} = Z_n(f)$: Driving-point impedance at nullor input.



 $H_v(f)$: Transfer function from V_n to the output noise e_{ℓ_n}

 $H_i(f)$: Transfer function from I_n to the output noise e_{ℓ_n}

 $\frac{H_i(f)}{H_v(f)} = Z_n(f)$: Driving-point impedance at nullor input.

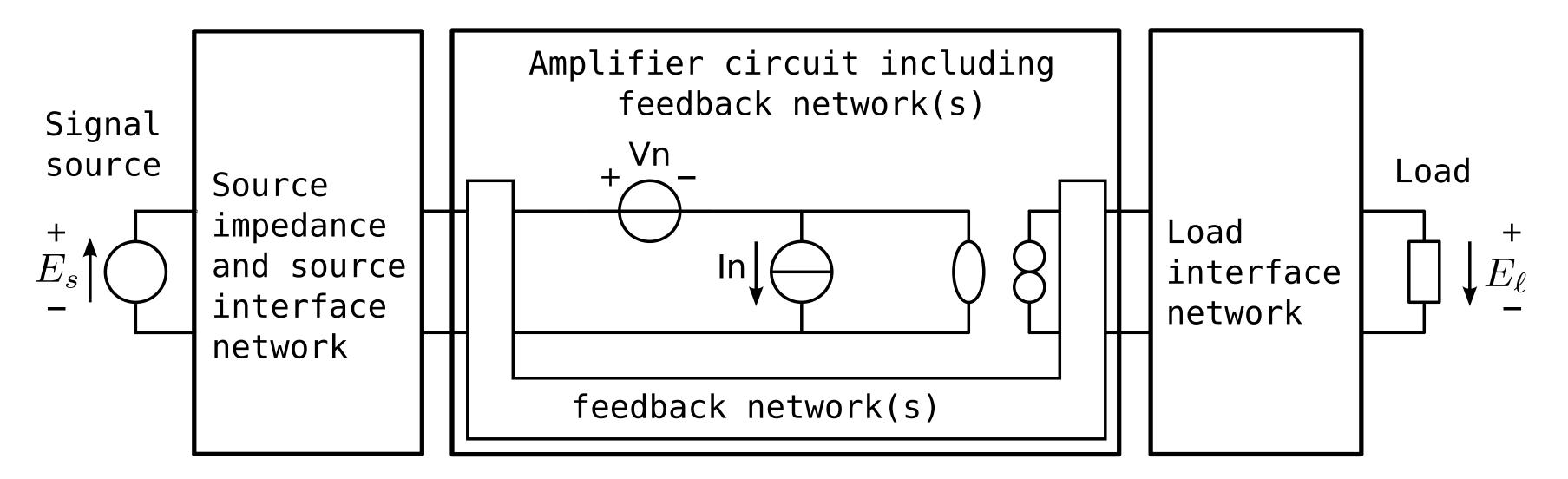


 $H_v(f)$: Transfer function from V_n to the output noise e_{ℓ_n}

 $H_i(f)$: Transfer function from I_n to the output noise e_{ℓ_n}

 $\frac{H_i(f)}{H_v(f)} = Z_n(f)$: Driving-point impedance at nullor input.

$$e_{\ell_n}^2 = \int_{f_{\min}}^{f_{\max}} S_{v_n} |H_v(f)W(f)|^2 df + \int_{f_{\min}}^{f_{\max}} S_{i_n} |H_i(f)W(f)|^2 df + \int_{f_{\min}}^{f_{\max}} S_0 |W(f)|^2 df$$

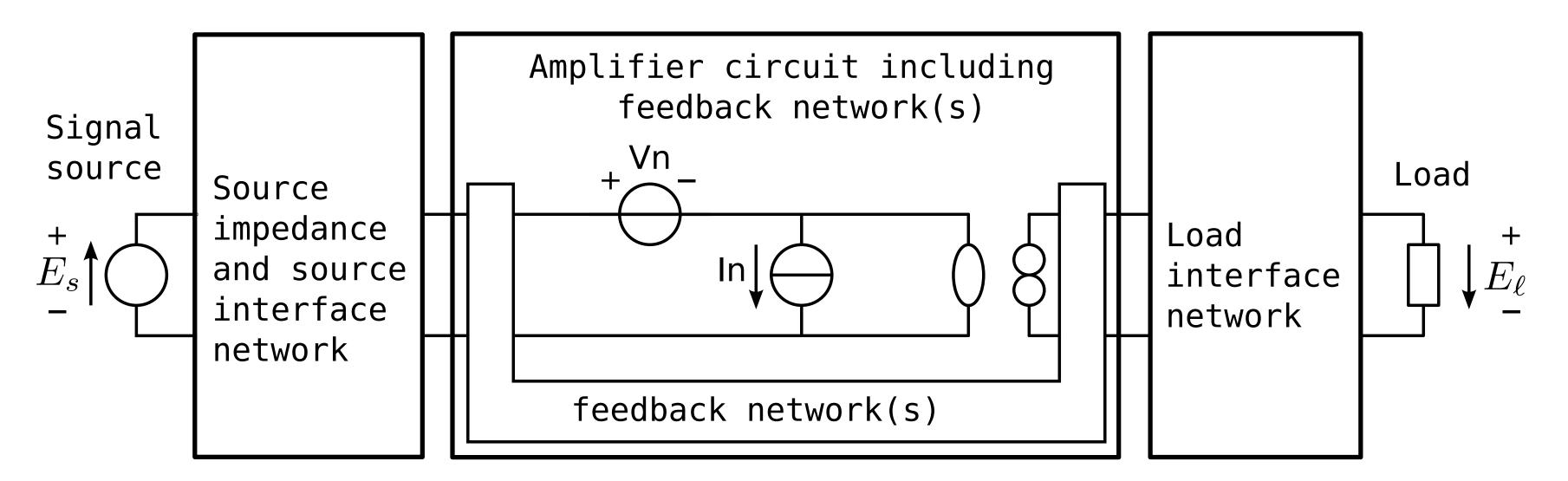


 $H_v(f)$: Transfer function from V_n to the output noise e_{ℓ_n}

 $H_i(f)$: Transfer function from I_n to the output noise e_{ℓ_n}

 $\frac{H_i(f)}{H_v(f)} = Z_n(f)$: Driving-point impedance at nullor input.

$$e_{\ell_n}^2 = \int_{f_{\min}}^{f_{\max}} S_{v_n} \left| H_v(f) W(f) \right|^2 df + \int_{f_{\min}}^{f_{\max}} S_{i_n} \left| H_i(f) W(f) \right|^2 df + \int_{f_{\min}}^{f_{\max}} S_0 \left| W(f) \right|^2 df$$
Contribution of Vn to the weighted output noise

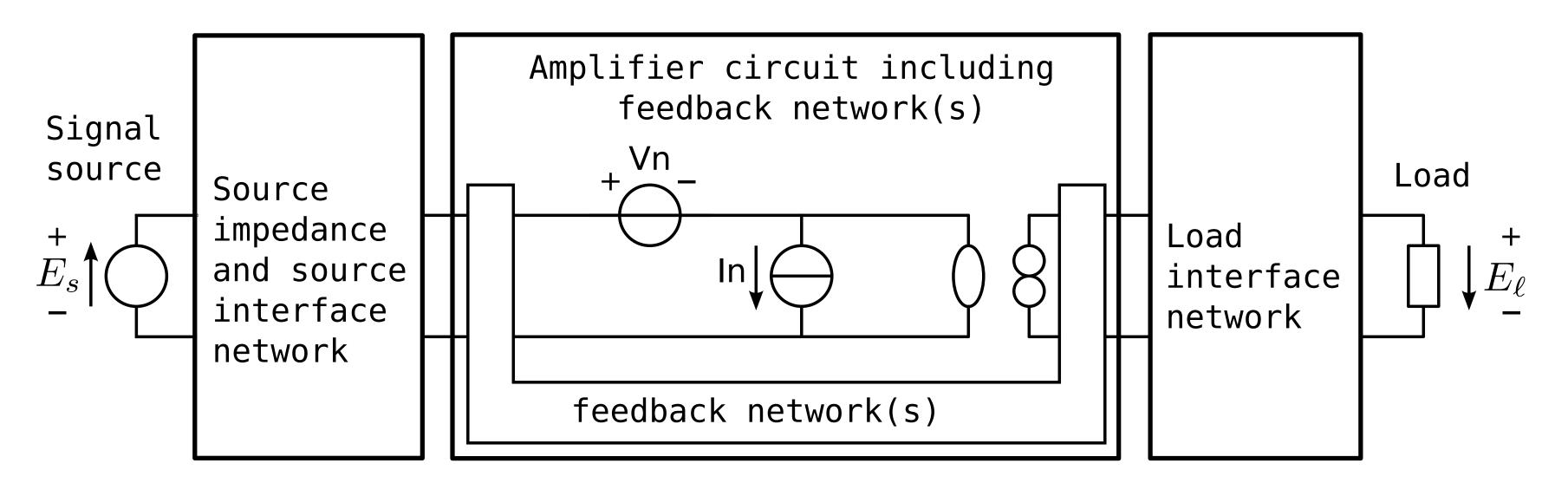


 $H_v(f)$: Transfer function from V_n to the output noise e_{ℓ_n}

 $H_i(f)$: Transfer function from I_n to the output noise e_{ℓ_n}

 $\frac{H_i(f)}{H_v(f)} = Z_n(f)$: Driving-point impedance at nullor input.

$$e_{\ell_n}^2 = \int_{f_{\min}}^{f_{\max}} S_{v_n} \left| H_v(f) W(f) \right|^2 df + \int_{f_{\min}}^{f_{\max}} S_{i_n} \left| H_i(f) W(f) \right|^2 df + \int_{f_{\min}}^{f_{\max}} S_0 \left| W(f) \right|^2 df$$
Contribution of Vn to the weighted output noise the weighted output noise



 $H_v(f)$: Transfer function from V_n to the output noise e_{ℓ_n}

 $H_i(f)$: Transfer function from I_n to the output noise e_{ℓ_n}

 $\frac{H_i(f)}{H_v(f)} = Z_n(f)$: Driving-point impedance at nullor input.

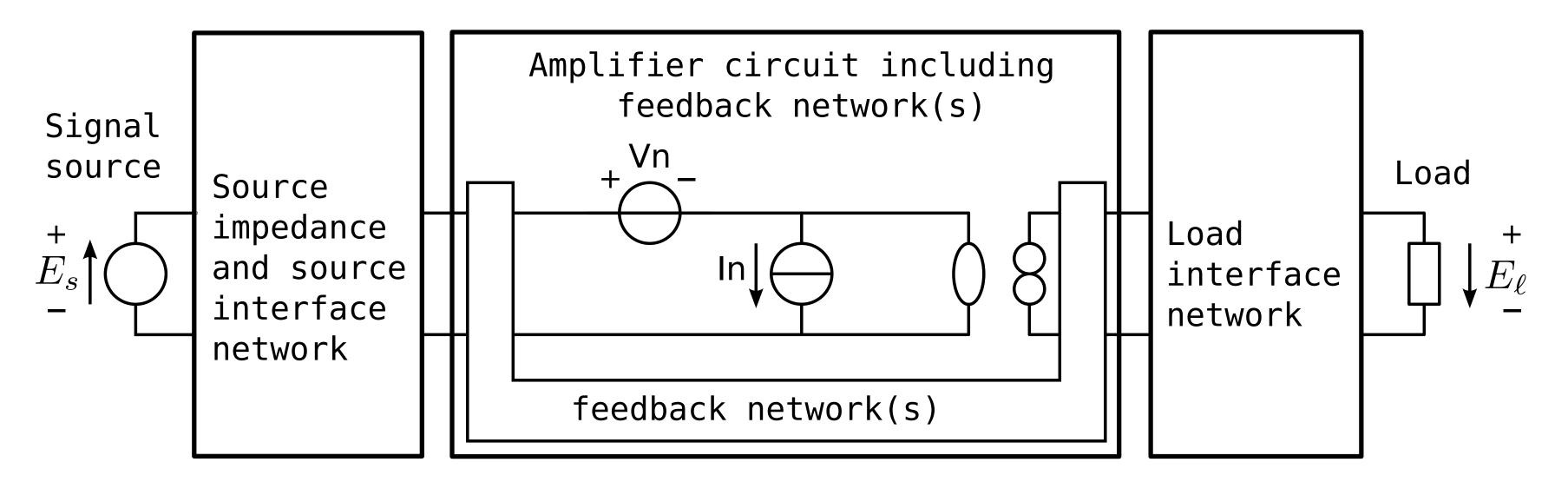
W(f): Noise weighting function

$$e_{\ell_n}^2 = \int_{f_{\min}}^{f_{\max}} S_{v_n} |H_v(f)W(f)|^2 df + \int_{f_{\min}}^{f_{\max}} S_{i_n} |H_i(f)W(f)|^2 df + \int_{f_{\min}}^{f_{\max}} S_0 |W(f)|^2 df$$

Contribution of Vn to the weighted output noise

Contribution of In to the weighted output noise

Contribution of the source, the feedback and the interface network(s) to the weighted output noise



the weighted output noise

 $H_v(f)$: Transfer function from V_n to the output noise e_{ℓ_n}

 $H_i(f)$: Transfer function from I_n to the output noise e_{ℓ_n}

 $\frac{H_i(f)}{H_v(f)} = Z_n(f)$: Driving-point impedance at nullor input.

the weighted output noise

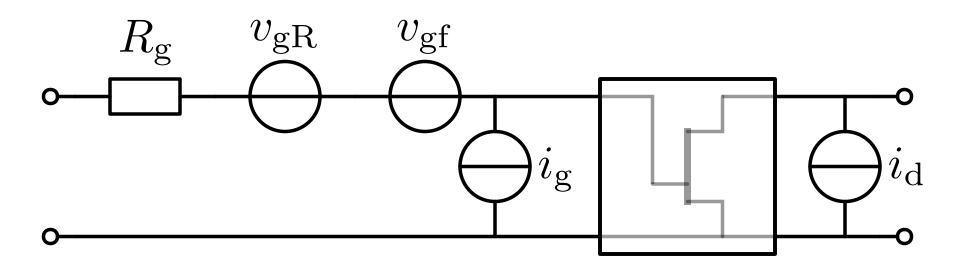
W(f): Noise weighting function

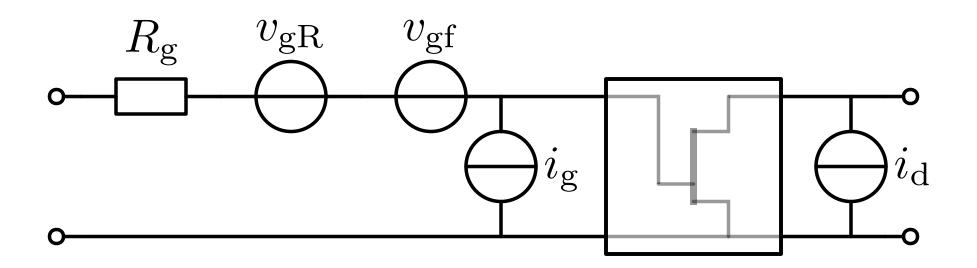
$$e_{\ell_n}^2 = \int_{f_{\min}}^{f_{\max}} S_{v_n} \left| H_v(f) W(f) \right|^2 df + \int_{f_{\min}}^{f_{\max}} S_{i_n} \left| H_i(f) W(f) \right|^2 df + \int_{f_{\min}}^{f_{\max}} S_0 \left| W(f) \right|^2 df$$
Contribution of Vn to

Contribution of In to

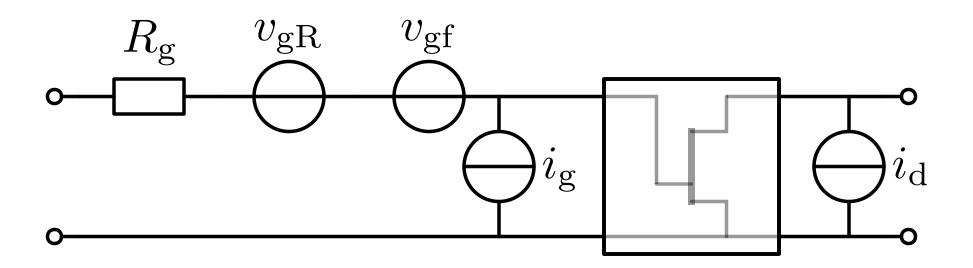
Contribution of the

Contribution of the source, the feedback and the interface network(s) to the weighted output noise



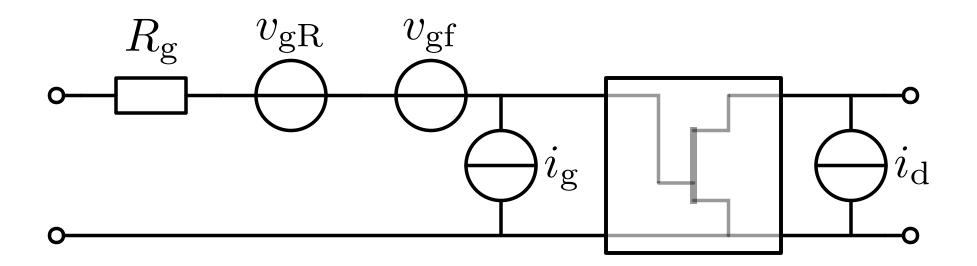


 R_g : gate (series) resistance



 R_g : gate (series) resistance

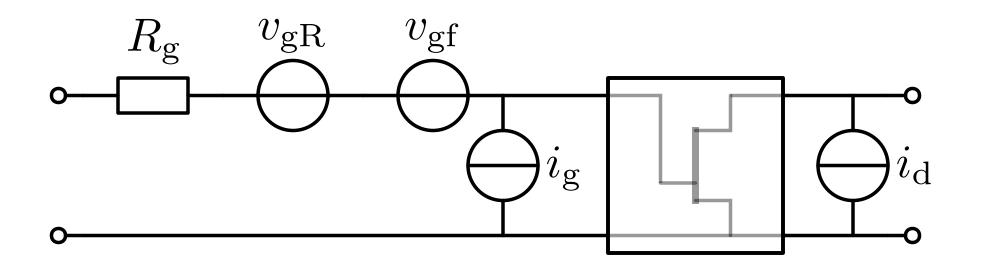
 v_{gR} : noise voltage gate (series) resistance: $S_{v_{gR}} = 4kTR_g V^2/Hz$



 R_q : gate (series) resistance

 v_{gR} : noise voltage gate (series) resistance: $S_{v_{gR}} = 4kTR_g V^2/Hz$

 v_{gf} : input-referred flicker noise voltage: $S_{v_{gf}} = \frac{K_F}{C_{OX}^2 W L f^{AF}} V^2 / Hz$

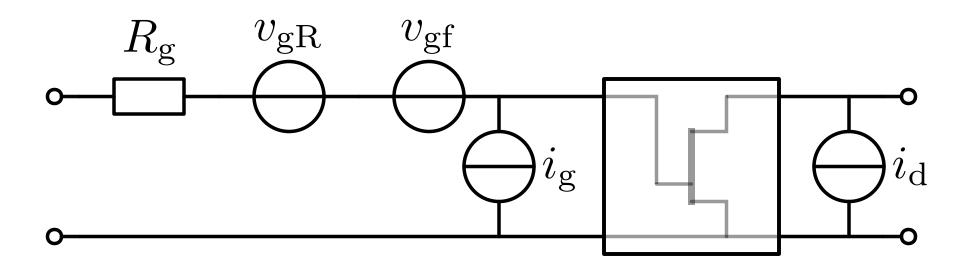


 R_q : gate (series) resistance

 v_{gR} : noise voltage gate (series) resistance: $S_{v_{gR}} = 4kTR_g V^2/Hz$

 v_{gf} : input-referred flicker noise voltage: $S_{v_{gf}} = \frac{K_F}{C_{OX}^2 W L f^{AF}} V^2 / Hz$

 i_g : gate leakage current noise: $S_{i_g} = 2qI_G \, \mathrm{A}^2/\mathrm{Hz}$



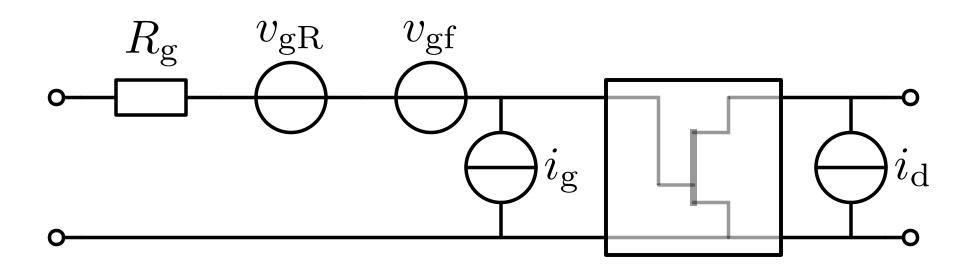
 R_q : gate (series) resistance

 v_{gR} : noise voltage gate (series) resistance: $S_{v_{gR}} = 4kTR_g V^2/Hz$

 v_{gf} : input-referred flicker noise voltage: $S_{v_{gf}} = \frac{K_F}{C_{OX}^2 W L f^{AF}} V^2 / Hz$

 i_g : gate leakage current noise: $S_{i_g} = 2qI_G \, \mathrm{A}^2/\mathrm{Hz}$

 i_d : channel current noise: $S_{i_d} = 4kTn\Gamma g_m \, A^2/Hz$



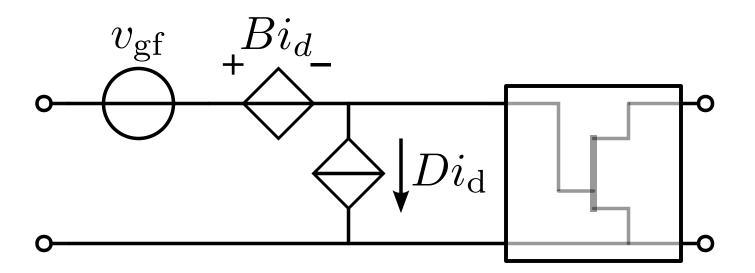
 R_g : gate (series) resistance

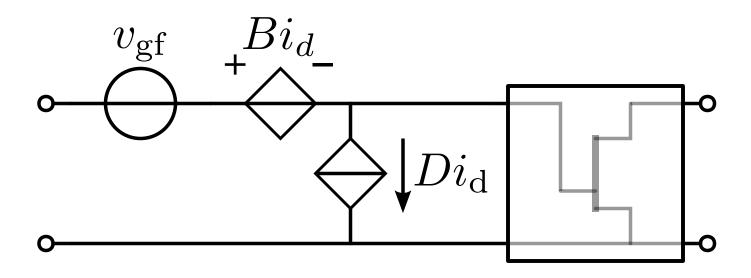
 v_{gR} : noise voltage gate (series) resistance: $S_{v_{gR}} = 4kTR_g V^2/Hz$

 v_{gf} : input-referred flicker noise voltage: $S_{v_{gf}} = \frac{K_F}{C_{OX}^2 W L f^{AF}} V^2 / Hz$

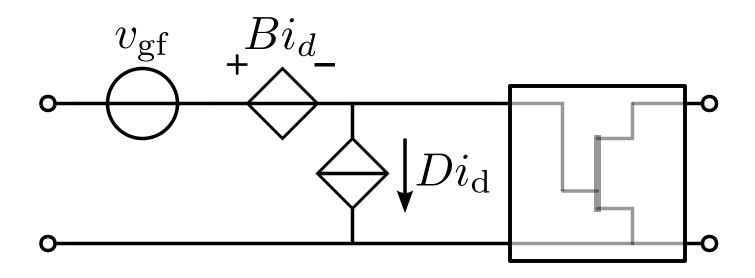
 i_g : gate leakage current noise: $S_{i_g} = 2qI_G \, \mathrm{A}^2/\mathrm{Hz}$

 i_d : channel current noise: $S_{i_d} = 4kTn\Gamma g_m A^2/Hz$



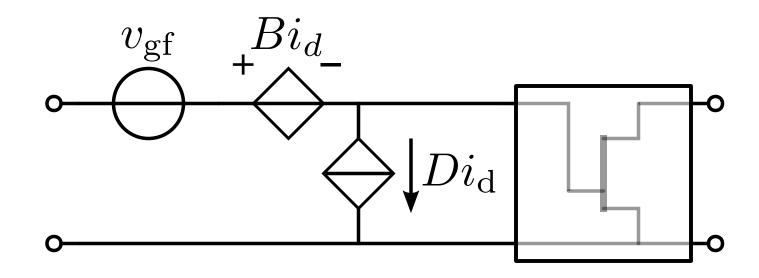


$$B = \frac{1}{j2\pi f c_{\rm dg} - g_m} \approx \frac{1}{g_m}$$



$$B = \frac{1}{j2\pi f c_{\rm dg} - g_m} \approx \frac{1}{g_m}$$

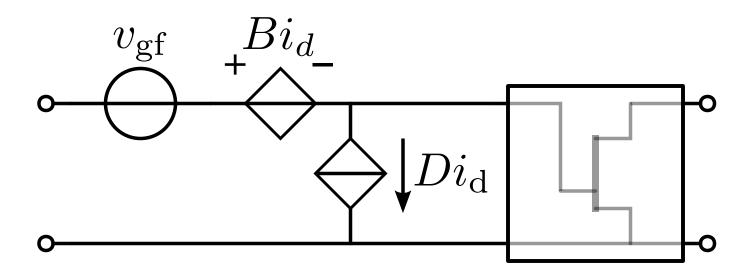
$$D = \frac{j2\pi f c_{\rm iss}}{j2\pi f c_{\rm dg} - g_m} \approx \frac{j2\pi f c_{\rm iss}}{g_m}$$



$$B = \frac{1}{j2\pi f c_{\rm dg} - g_m} \approx \frac{1}{g_m}$$

$$D = \frac{j2\pi f c_{\rm iss}}{j2\pi f c_{\rm dg} - g_m} \approx \frac{j2\pi f c_{\rm iss}}{g_m}$$

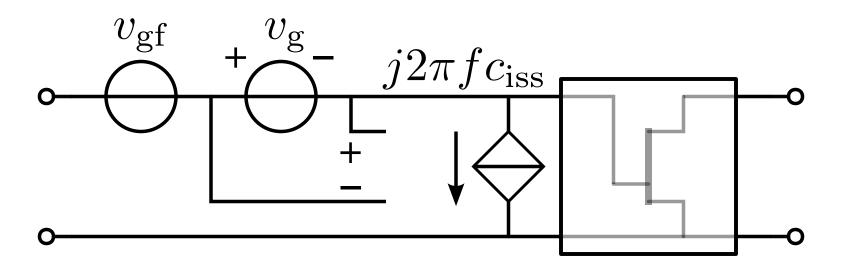
Negative signs accounted for in the source directions

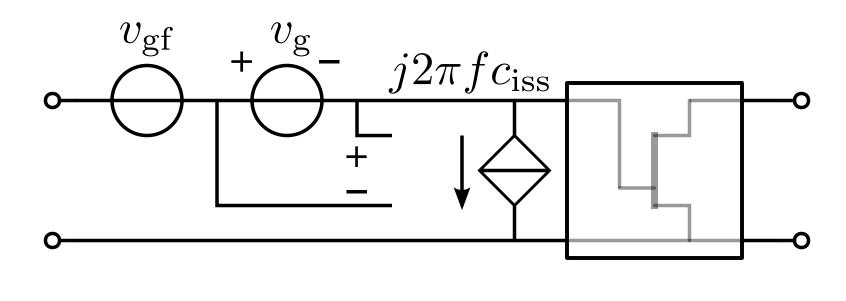


$$B = \frac{1}{j2\pi f c_{\rm dg} - g_m} \approx \frac{1}{g_m}$$

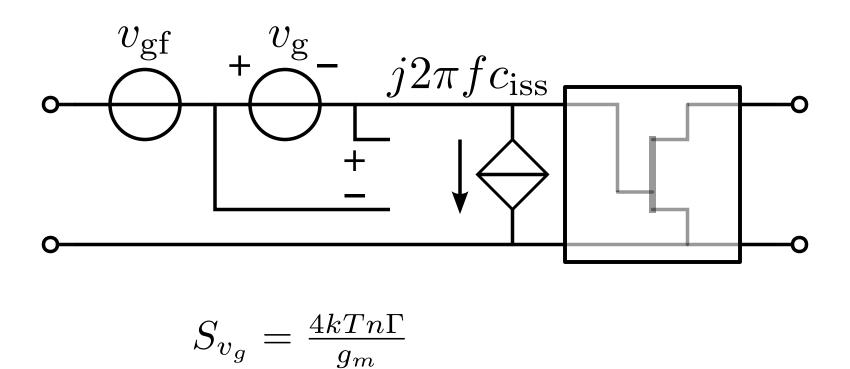
$$D = \frac{j2\pi f c_{\rm iss}}{j2\pi f c_{\rm dg} - g_m} \approx \frac{j2\pi f c_{\rm iss}}{g_m}$$

Negative signs accounted for in the source directions

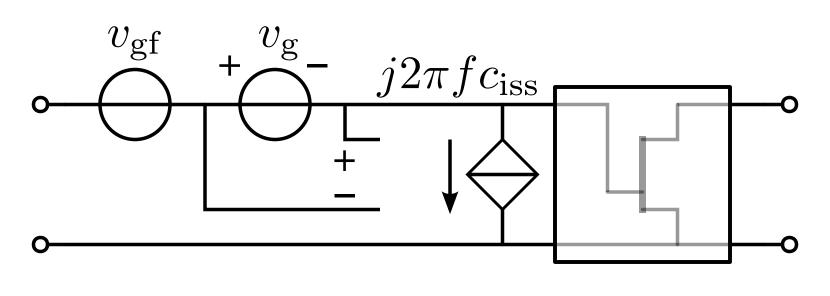




 $S_{v_g} = \frac{4kTn\Gamma}{g_m}$



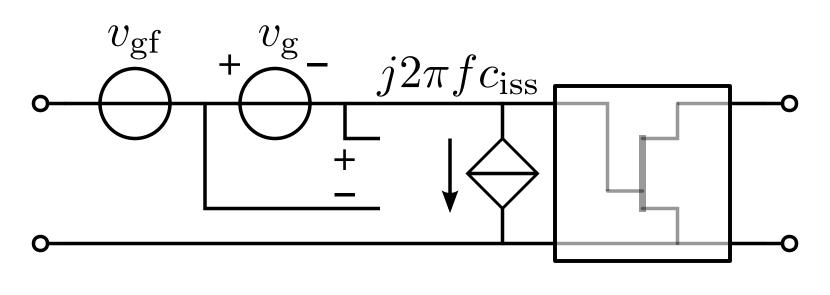
Ignore the overlap capacitances: the input capacitance is proportional with the oxide capcitance:



$$S_{v_g} = \frac{4kTn\Gamma}{g_m}$$

Ignore the overlap capacitances: the input capacitance is proportional with the oxide capcitance:

$$c_{\rm iss} = \chi W L C_{\rm OX}$$
 $S_{v_{gf}} = \frac{K_F}{C_{\rm OX} W L f^{\rm AF}} \approx \frac{\chi K_F}{C_{\rm OX} c_{\rm iss} f^{\rm AF}} \, V^2 / Hz$

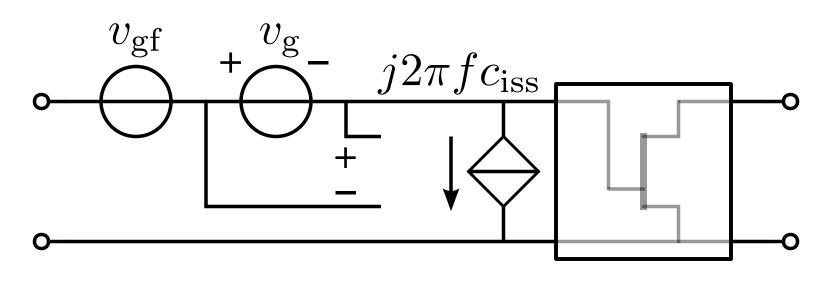


$$S_{v_g} = \frac{4kTn\Gamma}{g_m}$$

Ignore the overlap capacitances: the input capacitance is proportional with the oxide capcitance:

$$c_{\rm iss} = \chi W L C_{\rm OX}$$
 $S_{v_{gf}} = \frac{K_F}{C_{\rm OX} W L f^{\rm AF}} \approx \frac{\chi K_F}{C_{\rm OX} c_{\rm iss} f^{\rm AF}} \, V^2 / {\rm Hz}$

 χ , Γ and K_F depend on the inversion level



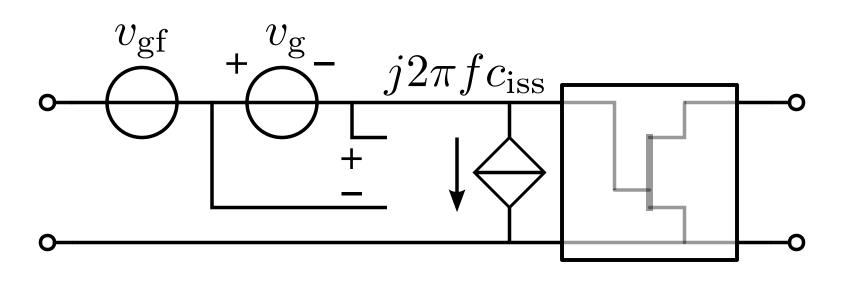
$$S_{v_g} = \frac{4kTn\Gamma}{g_m}$$

Ignore the overlap capacitances: the input capacitance is proportional with the oxide capcitance:

$$c_{\rm iss} = \chi W L C_{\rm OX}$$
 $S_{v_{gf}} = \frac{K_F}{C_{\rm OX} W L f^{\rm AF}} \approx \frac{\chi K_F}{C_{\rm OX} c_{\rm iss} f^{\rm AF}} \, V^2 / Hz$

 χ , Γ and K_F depend on the inversion level

$$\chi = 0.26 \cdots 0.6$$
 with $IC = 0 \cdots \infty$ and $n = 1.35$



$$S_{v_g} = \frac{4kTn\Gamma}{g_m}$$

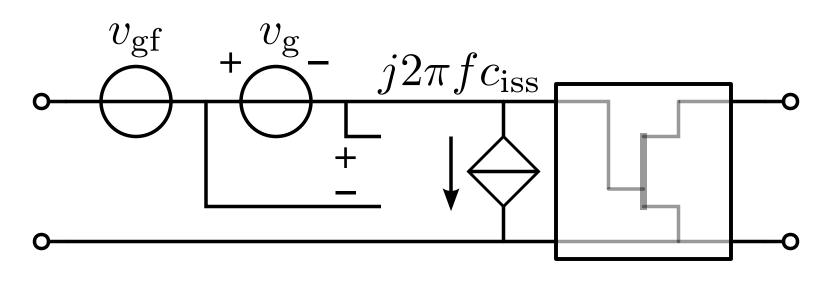
Ignore the overlap capacitances: the input capacitance is proportional with the oxide capcitance:

$$c_{\rm iss} = \chi W L C_{\rm OX}$$
 $S_{v_{gf}} = \frac{K_F}{C_{\rm OX} W L f^{\rm AF}} \approx \frac{\chi K_F}{C_{\rm OX} c_{\rm iss} f^{\rm AF}} \, V^2 / Hz$

 χ , Γ and K_F depend on the inversion level

$$\chi = 0.26 \cdots 0.6$$
 with $IC = 0 \cdots \infty$ and $n = 1.35$

$$\Gamma = \frac{1}{2} \cdots \frac{2}{3}$$
 with $IC = 0 \cdots \infty$



$$S_{v_g} = \frac{4kTn\Gamma}{g_m}$$

Ignore the overlap capacitances: the input capacitance is proportional with the oxide capcitance:

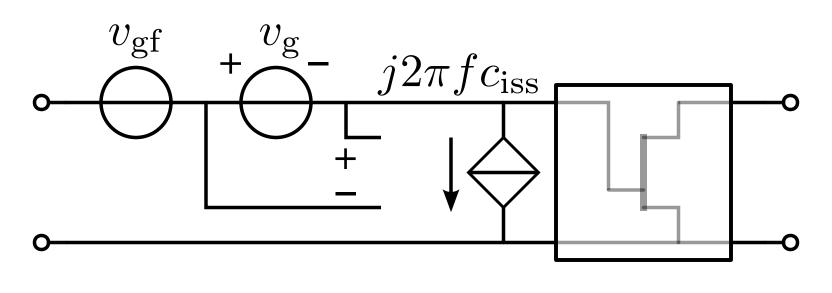
$$c_{\rm iss} = \chi W L C_{\rm OX}$$
 $S_{v_{gf}} = \frac{K_F}{C_{\rm OX} W L f^{\rm AF}} \approx \frac{\chi K_F}{C_{\rm OX} c_{\rm iss} f^{\rm AF}} \, {\rm V}^2/{\rm Hz}$

 χ , Γ and K_F depend on the inversion level

$$\chi = 0.26 \cdots 0.6$$
 with $IC = 0 \cdots \infty$ and $n = 1.35$

$$\Gamma = \frac{1}{2} \cdots \frac{2}{3}$$
 with $IC = 0 \cdots \infty$

$$K_F = K_{F0} \left(1 + \frac{V_{\rm EFF}}{V_{\rm KF}} \right)^2$$
 $V_{\rm KF} = 0.2 \cdots 2$



$$S_{v_g} = \frac{4kTn\Gamma}{g_m}$$

Ignore the overlap capacitances: the input capacitance is proportional with the oxide capcitance:

$$c_{\rm iss} = \chi W L C_{\rm OX}$$
 $S_{v_{gf}} = \frac{K_F}{C_{\rm OX} W L f^{\rm AF}} \approx \frac{\chi K_F}{C_{\rm OX} c_{\rm iss} f^{\rm AF}} \, V^2 / Hz$

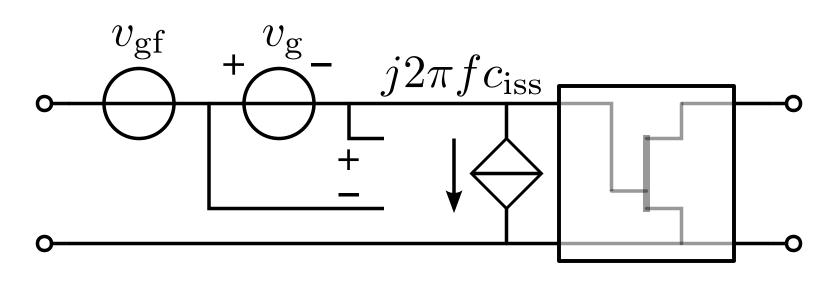
 χ , Γ and K_F depend on the inversion level

$$\chi = 0.26 \cdots 0.6$$
 with $IC = 0 \cdots \infty$ and $n = 1.35$

$$\Gamma = \frac{1}{2} \cdots \frac{2}{3}$$
 with $IC = 0 \cdots \infty$

$$K_F = K_{F0} \left(1 + \frac{V_{\text{EFF}}}{V_{\text{KF}}} \right)^2$$
 $V_{\text{KF}} = 0.2 \cdots 2$

 S_{v_g} and $S_{v_{gf}}$ are now expressed in the MOS design parameters g_m and c_{iss}



$$S_{v_g} = \frac{4kTn\Gamma}{g_m}$$

Ignore the overlap capacitances: the input capacitance is proportional with the oxide capcitance:

$$c_{\rm iss} = \chi W L C_{\rm OX}$$
 $S_{v_{gf}} = \frac{K_F}{C_{\rm OX} W L f^{\rm AF}} \approx \frac{\chi K_F}{C_{\rm OX} c_{\rm iss} f^{\rm AF}} \, V^2 / Hz$

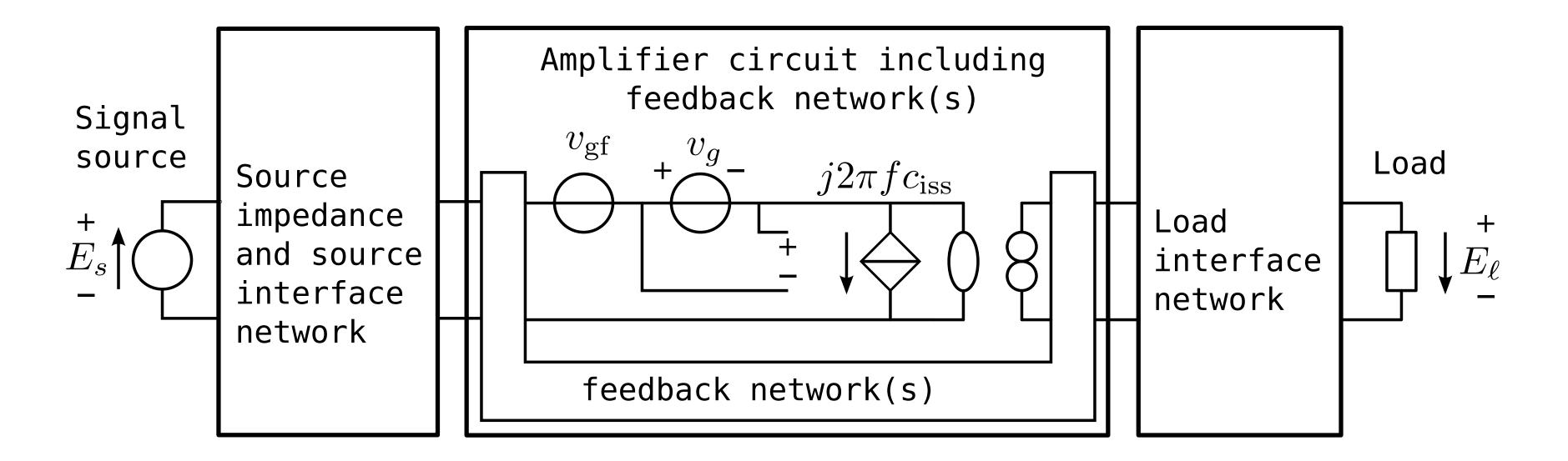
 χ , Γ and K_F depend on the inversion level

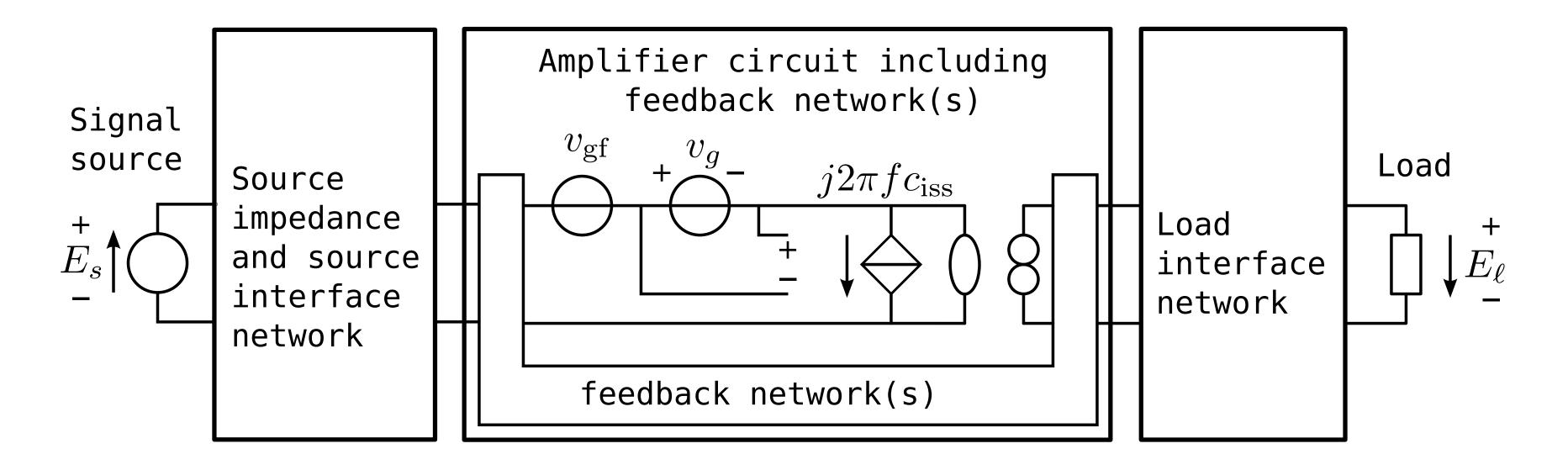
$$\chi = 0.26 \cdots 0.6$$
 with $IC = 0 \cdots \infty$ and $n = 1.35$

$$\Gamma = \frac{1}{2} \cdots \frac{2}{3}$$
 with $IC = 0 \cdots \infty$

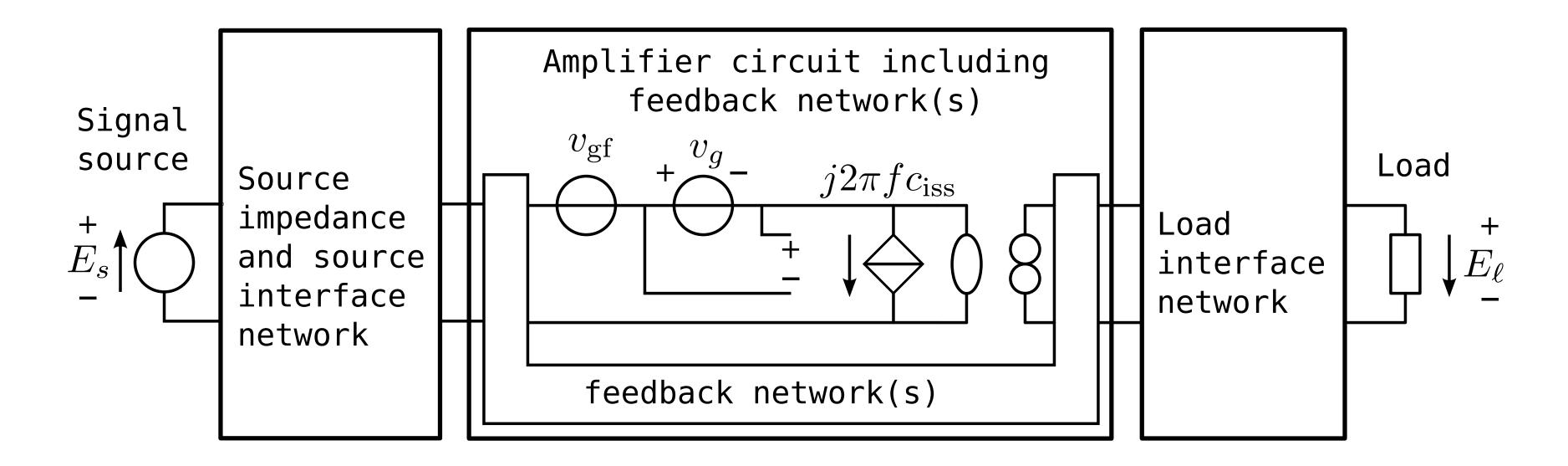
$$K_F = K_{F0} \left(1 + \frac{V_{\text{EFF}}}{V_{\text{KF}}} \right)^2$$
 $V_{\text{KF}} = 0.2 \cdots 2$

 S_{v_q} and $S_{v_{qf}}$ are now expressed in the MOS design parameters g_m and c_{iss}

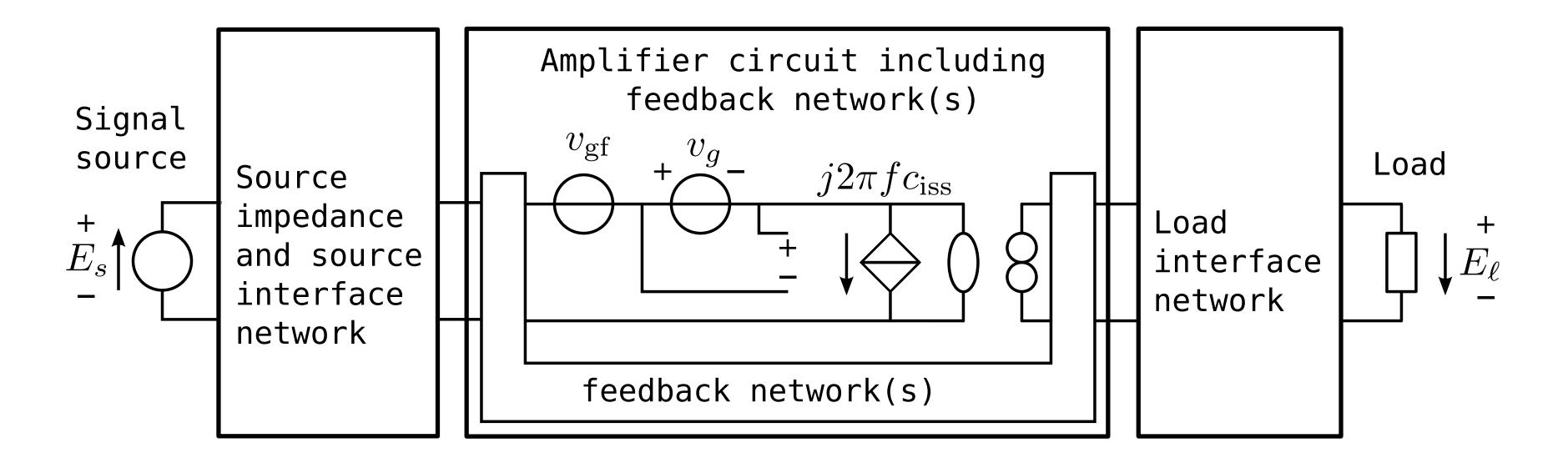




$$S_{v_g} = \frac{4kTn\Gamma}{g_m}$$
 V²/Hz

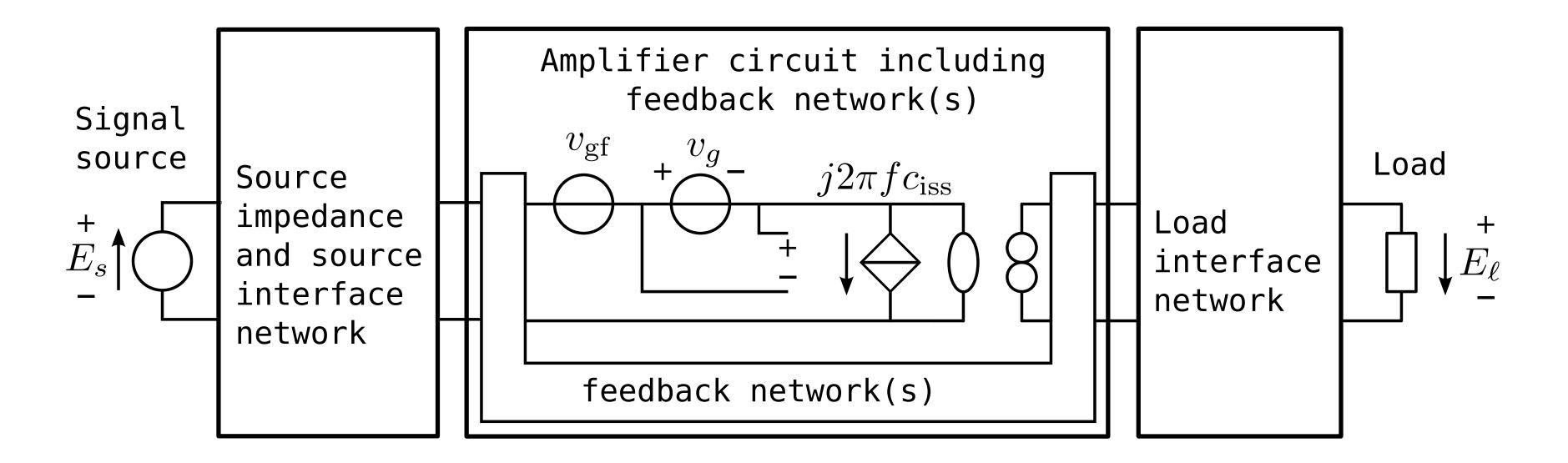


$$S_{v_g} = \frac{4kTn\Gamma}{g_m}$$
 V²/Hz
$$S_{v_{gf}} = \frac{\chi K_F}{C_{\rm OX}c_{\rm iss}f^{\rm AF}}$$
 V²/Hz



$$S_{v_g} = \frac{4kTn\Gamma}{g_m}$$
 V²/Hz
 $S_{v_{gf}} = \frac{\chi K_F}{C_{OX}c_{iss}f^{AF}}$ V²/Hz

Next step: determine MOS parameters g_m and c_{iss} at a given inversion level



$$S_{v_g} = \frac{4kTn\Gamma}{g_m}$$
 V²/Hz
 $S_{v_{gf}} = \frac{\chi K_F}{C_{OX} c_{iss} f^{AF}}$ V²/Hz

Next step: determine MOS parameters g_m and c_{iss} at a given inversion level

$$S_{e\ell} = \frac{\chi K_F}{C_{\text{OX}}} \frac{1}{c_{\text{iss}} f^{\text{AF}}} |H_{\text{v}}|^2 + \frac{4kTn\Gamma}{g_m} |H_{\text{v}} + H_{\text{i}} 2\pi j f c_{iss})|^2 + S_0$$

$$S_{e\ell} = \frac{\chi K_F}{C_{\text{OX}}} \frac{1}{c_{\text{iss}} f^{\text{AF}}} |H_{\text{v}}|^2 + \frac{4kTn\Gamma}{g_m} |H_{\text{v}} + H_{\text{i}} 2\pi j f c_{iss})|^2 + S_0$$

$$S_{e\ell} = \frac{1}{c_{iss}} \frac{\chi K_F |H_{\rm v}|^2}{C_{OX} f^{\rm AF}}$$

$$\begin{split} S_{e\ell} &= \frac{\chi K_F}{C_{\rm OX}} \frac{1}{c_{\rm iss} f^{\rm AF}} |H_{\rm v}|^2 + \frac{4kTn\Gamma}{g_m} |H_{\rm v} + H_{\rm i} 2\pi j f c_{iss})|^2 + S_0 \\ S_{e\ell} &= \frac{1}{c_{iss}} \frac{\chi K_F |H_{\rm v}|^2}{C_{OX} f^{\rm AF}} \\ &+ \frac{1}{g_m} 4kTn\Gamma |H_{\rm v}|^2 \\ &+ \frac{c_{iss}}{g_m} 16kTn\Gamma \pi f(\Im(H_{\rm v})\Re(H_{\rm i}) - \Re(H_{\rm v})\Im(H_{\rm i})) \\ &+ \frac{c_{iss}^2}{g_m} 16kTn\Gamma \pi^2 f^2 |H_{\rm i}|^2 \end{split}$$

$$\begin{split} S_{e\ell} &= \frac{\chi K_F}{C_{\rm OX}} \frac{1}{c_{\rm iss} f^{\rm AF}} |H_{\rm v}|^2 + \frac{4kTn\Gamma}{g_m} |H_{\rm v} + H_{\rm i} 2\pi j f c_{iss})|^2 + S_0 \\ S_{e\ell} &= \frac{1}{c_{iss}} \frac{\chi K_F |H_{\rm v}|^2}{C_{OX} f^{\rm AF}} \\ &+ \frac{1}{g_m} 4kTn\Gamma |H_{\rm v}|^2 \\ &+ \frac{c_{iss}}{g_m} 16kTn\Gamma \pi f (\Im(H_{\rm v})\Re(H_{\rm i}) - \Re(H_{\rm v})\Im(H_{\rm i})) \\ &+ \frac{c_{iss}^2}{g_m} 16kTn\Gamma \pi^2 f^2 |H_{\rm i}|^2 \\ &+ S_0 \end{split}$$

$$\begin{split} S_{e\ell} &= \frac{\chi K_F}{C_{\rm OX}} \frac{1}{c_{\rm iss} f^{\rm AF}} |H_{\rm v}|^2 + \frac{4kTn\Gamma}{g_m} |H_{\rm v} + H_{\rm i} 2\pi j f c_{iss})|^2 + S_0 \\ S_{e\ell} &= \frac{1}{c_{iss}} \frac{\chi K_F |H_{\rm v}|^2}{C_{OX} f^{\rm AF}} \\ &+ \frac{1}{g_m} 4kTn\Gamma |H_{\rm v}|^2 \\ &+ \frac{c_{iss}}{g_m} 16kTn\Gamma \pi f (\Im(H_{\rm v}) \Re(H_{\rm i}) - \Re(H_{\rm v}) \Im(H_{\rm i})) \\ &+ \frac{c_{iss}^2}{g_m} 16kTn\Gamma \pi^2 f^2 |H_{\rm i}|^2 \\ &+ S_0 \\ e_\ell^2 &= \int_0^\infty |W_f|^2 S_{e\ell} df \end{split}$$

$$\begin{split} S_{e\ell} &= \frac{\chi K_F}{C_{\rm OX}} \frac{1}{c_{\rm iss} f^{\rm AF}} |H_{\rm v}|^2 + \frac{4kTn\Gamma}{g_m} |H_{\rm v} + H_{\rm i} 2\pi j f c_{iss})|^2 + S_0 \\ S_{e\ell} &= \frac{1}{c_{iss}} \frac{\chi K_F |H_{\rm v}|^2}{C_{OX} f^{\rm AF}} \\ &+ \frac{1}{g_m} 4kTn\Gamma |H_{\rm v}|^2 \\ &+ \frac{c_{iss}}{g_m} 16kTn\Gamma \pi f (\Im(H_{\rm v}) \Re(H_{\rm i}) - \Re(H_{\rm v}) \Im(H_{\rm i})) \\ &+ \frac{c_{iss}^2}{g_m} 16kTn\Gamma \pi^2 f^2 |H_{\rm i}|^2 \\ &+ S_0 \\ e_\ell^2 &= \int_0^\infty |W_f|^2 S_{e\ell} df \\ e_\ell^2 &= \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon \end{split}$$

$$\begin{split} S_{e\ell} &= \frac{\chi K_F}{C_{\rm OX}} \frac{1}{c_{\rm iss} f^{\rm AF}} |H_{\rm v}|^2 + \frac{4kTn\Gamma}{g_m} |H_{\rm v} + H_{\rm i} 2\pi j f c_{iss})|^2 + S_0 \\ S_{e\ell} &= \frac{1}{c_{iss}} \frac{\chi K_F |H_{\rm v}|^2}{C_{OX} f^{\rm AF}} \\ &+ \frac{1}{g_m} 4kTn\Gamma |H_{\rm v}|^2 \\ &+ \frac{c_{iss}}{g_m} 16kTn\Gamma \pi f (\Im(H_{\rm v}) \Re(H_{\rm i}) - \Re(H_{\rm v}) \Im(H_{\rm i})) \\ &+ \frac{c_{iss}^2}{g_m} 16kTn\Gamma \pi^2 f^2 |H_{\rm i}|^2 \\ &+ S_0 \\ e_\ell^2 &= \int_0^\infty |W_f|^2 S_{e\ell} df \\ e_\ell^2 &= \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon \end{split}$$

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

$$\alpha = \frac{\chi K_F}{C_{OX}} \int_0^\infty \frac{|W_f H_v|^2}{f^{AF}} df$$

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

$$\alpha = \frac{\chi K_F}{C_{OX}} \int_0^\infty \frac{|W_f H_v|^2}{f^{AF}} df$$

$$\beta = 4kTn\Gamma \int_0^\infty |W_f H_v|^2 df$$

$$\begin{split} e_{\ell}^2 &= \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon \\ \alpha &= \frac{\chi K_F}{C_{OX}} \int_0^{\infty} \frac{|W_f H_v|^2}{f^{\text{AF}}} df \\ \beta &= 4kTn\Gamma \int_0^{\infty} |W_f H_v|^2 df \\ \gamma &= 16kTn\Gamma \pi \int_0^{\infty} f|W_f|^2 [\Im(H_v)\Re(H_i) - \Re(H_v)\Im(H_i)] df = -16kTn\Gamma \pi \int_0^{\infty} f|W_f|^2 \Im(Z_n) |H_v|^2 df \end{split}$$

$$\begin{split} e_\ell^2 &= \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon \\ \alpha &= \frac{\chi K_F}{C_{OX}} \int_0^\infty \frac{|W_f H_{\rm v}|^2}{f^{\Lambda F}} df \\ \beta &= 4kTn\Gamma \int_0^\infty |W_f H_{\rm v}|^2 df \\ \gamma &= 16kTn\Gamma \pi \int_0^\infty f|W_f|^2 [\Im(H_{\rm v})\Re(H_{\rm i}) - \Re(H_{\rm v})\Im(H_{\rm i})] df = -16kTn\Gamma \pi \int_0^\infty f|W_f|^2 \Im(Z_n) |H_{\rm v}|^2 df \\ \Im(Z_n) &= \frac{\Im(H_{\rm i})\Re(H_{\rm v}) - \Re(H_{\rm i})\Im(H_{\rm v})}{|H_{\rm v}|^2} \end{split}$$

$$\begin{split} e_\ell^2 &= \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon \\ \alpha &= \frac{\chi K_F}{C_{OX}} \int_0^\infty \frac{|W_f H_{\rm v}|^2}{f^{\rm AF}} df \\ \beta &= 4kTn\Gamma \int_0^\infty |W_f H_{\rm v}|^2 df \\ \gamma &= 16kTn\Gamma \pi \int_0^\infty f|W_f|^2 [\Im(H_{\rm v})\Re(H_{\rm i}) - \Re(H_{\rm v})\Im(H_{\rm i})] df = -16kTn\Gamma \pi \int_0^\infty f|W_f|^2 \Im(Z_n) |H_{\rm v}|^2 df \\ \delta &= 16kTn\Gamma \pi^2 \int_0^\infty f^2 |W_f H_{\rm i}|^2 df \\ \Im(Z_n) &= \frac{\Im(H_{\rm i})\Re(H_{\rm v}) - \Re(H_{\rm i})\Im(H_{\rm v})}{|H_{\rm v}|^2} \end{split}$$

$$e_{\ell}^{2} = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_{m}} + \gamma \frac{c_{iss}}{g_{m}} + \delta \frac{c_{iss}^{2}}{g_{m}} + \epsilon$$

$$\alpha = \frac{\chi K_{F}}{C_{OX}} \int_{0}^{\infty} \frac{|W_{f}H_{v}|^{2}}{f^{AF}} df$$

$$\beta = 4kTn\Gamma \int_{0}^{\infty} |W_{f}H_{v}|^{2} df$$

$$\gamma = 16kTn\Gamma \pi \int_{0}^{\infty} f|W_{f}|^{2} [\Im(H_{v})\Re(H_{i}) - \Re(H_{v})\Im(H_{i})] df = -16kTn\Gamma \pi \int_{0}^{\infty} f|W_{f}|^{2} \Im(Z_{n}) |H_{v}|^{2} df$$

$$\delta = 16kTn\Gamma \pi^{2} \int_{0}^{\infty} f^{2} |W_{f}H_{i}|^{2} df$$

$$\Im(Z_{n}) = \frac{\Im(H_{i})\Re(H_{v}) - \Re(H_{i})\Im(H_{v})}{|H_{v}|^{2}}$$

$$\epsilon = \int_{0}^{\infty} |W_{f}|^{2} S_{0} df$$

$$e_{\ell}^{2} = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_{m}} + \gamma \frac{c_{iss}}{g_{m}} + \delta \frac{c_{iss}^{2}}{g_{m}} + \epsilon$$

$$\alpha = \frac{\chi K_{F}}{C_{OX}} \int_{0}^{\infty} \frac{|W_{f}H_{v}|^{2}}{f^{AF}} df$$

$$\beta = 4kTn\Gamma \int_{0}^{\infty} |W_{f}H_{v}|^{2} df$$

$$\gamma = 16kTn\Gamma \pi \int_{0}^{\infty} f|W_{f}|^{2} [\Im(H_{v})\Re(H_{i}) - \Re(H_{v})\Im(H_{i})] df = -16kTn\Gamma \pi \int_{0}^{\infty} f|W_{f}|^{2} \Im(Z_{n}) |H_{v}|^{2} df$$

$$\delta = 16kTn\Gamma \pi^{2} \int_{0}^{\infty} f^{2} |W_{f}H_{i}|^{2} df$$

$$\Im(Z_{n}) = \frac{\Im(H_{i})\Re(H_{v}) - \Re(H_{i})\Im(H_{v})}{|H_{v}|^{2}}$$

$$\epsilon = \int_{0}^{\infty} |W_{f}|^{2} S_{0} df$$

Coefficients $\alpha \cdots \epsilon$ have numeric values at the start of the MOS noise design.

$$e_{\ell}^{2} = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_{m}} + \gamma \frac{c_{iss}}{g_{m}} + \delta \frac{c_{iss}^{2}}{g_{m}} + \epsilon$$

$$\alpha = \frac{\chi K_{F}}{C_{OX}} \int_{0}^{\infty} \frac{|W_{f}H_{v}|^{2}}{f^{AF}} df$$

$$\beta = 4kTn\Gamma \int_{0}^{\infty} |W_{f}H_{v}|^{2} df$$

$$\gamma = 16kTn\Gamma \pi \int_{0}^{\infty} f|W_{f}|^{2} [\Im(H_{v})\Re(H_{i}) - \Re(H_{v})\Im(H_{i})] df = -16kTn\Gamma \pi \int_{0}^{\infty} f|W_{f}|^{2} \Im(Z_{n}) |H_{v}|^{2} df$$

$$\delta = 16kTn\Gamma \pi^{2} \int_{0}^{\infty} f^{2} |W_{f}H_{i}|^{2} df$$

$$\Im(Z_{n}) = \frac{\Im(H_{i})\Re(H_{v}) - \Re(H_{i})\Im(H_{v})}{|H_{v}|^{2}}$$

$$\epsilon = \int_{0}^{\infty} |W_{f}|^{2} S_{0} df$$

Coefficients $\alpha \cdots \epsilon$ have numeric values at the start of the MOS noise design.

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

Total squared weighted output noise:

$$e_{\ell}^{2} = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_{m}} + \gamma \frac{c_{iss}}{g_{m}} + \delta \frac{c_{iss}^{2}}{g_{m}} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

Remember coefficients depend on inversion level!

Total squared weighted output noise:

$$e_{\ell}^{2} = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_{m}} + \gamma \frac{c_{iss}}{g_{m}} + \delta \frac{c_{iss}^{2}}{g_{m}} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

Remember coefficients depend on inversion level!

Relation between transconductance and input capacitance to meet requirement:

$$g_m \ge \frac{c_{\text{iss}}}{e_{\ell M}^2 c_{\text{iss}} - \alpha} \left(\beta + \gamma c_{\text{iss}} + \delta c_{\text{iss}}^2 \right)$$

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

Remember coefficients depend on inversion level!

Relation between transconductance and input capacitance to meet requirement:

$$g_m \ge \frac{c_{\text{iss}}}{e_{\ell_M}^2 c_{\text{iss}} - \alpha} \left(\beta + \gamma c_{\text{iss}} + \delta c_{\text{iss}}^2 \right)$$

This noise design equation has one minimum transconductance for: $c_{\rm iss}>rac{lpha}{e_{\ell_M}^2}$

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

Remember coefficients depend on inversion level!

Relation between transconductance and input capacitance to meet requirement:

$$g_m \ge \frac{c_{\text{iss}}}{e_{\ell_M}^2 c_{\text{iss}} - \alpha} \left(\beta + \gamma c_{\text{iss}} + \delta c_{\text{iss}}^2 \right)$$

This noise design equation has one minimum transconductance for: $c_{\rm iss}>rac{lpha}{e_{\ell_M}^2}$

Minimum can be below technological minimum set by the minimum channel width and length.

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

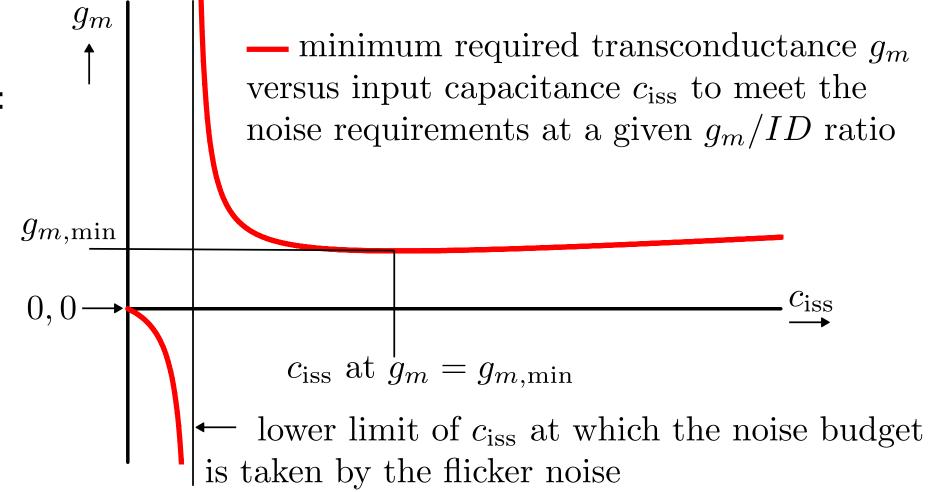
MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

Remember coefficients depend on inversion level!

Relation between transconductance and input capacitance to meet requirement:

$$g_m \ge \frac{c_{\text{iss}}}{e_{\ell_M}^2 c_{\text{iss}} - \alpha} \left(\beta + \gamma c_{\text{iss}} + \delta c_{\text{iss}}^2 \right)$$



This noise design equation has one minimum transconductance for: $c_{\rm iss}>rac{lpha}{e_{\ell,s}^2}$

Minimum can be below technological minimum set by the minimum channel width and length.

Feasibility of the noise design

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

Feasibility of the noise design

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

Feasibility of the noise design

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

NOT FEASIBLE:

If ϵ exceeds the requirement for the total squared weighted output noise.

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

NOT If ϵ exceeds the requirement for the total squared weighted output noise.

FEASIBLE: If $f_T = \frac{g_m}{2\pi c_{iss}}$ is too low:

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

NOT If ϵ exceeds the requirement for the total squared weighted output noise.

FEASIBLE: If $f_T = \frac{g_m}{2\pi c_{iss}}$ is too low:

$$e_{\ell}^2 = \frac{\alpha}{c_{\text{iss}}} + \frac{\beta}{2\pi f_T c_{\text{iss}}} + \frac{\gamma}{2\pi f_T} + \frac{\delta c_{\text{iss}}}{2\pi f_T} + \epsilon$$

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

NOT If ϵ exceeds the requirement for the total squared weighted output noise.

FEASIBLE: If $f_T = \frac{g_m}{2\pi c_{iss}}$ is too low:

$$e_{\ell}^2 = \frac{\alpha}{c_{\text{iss}}} + \frac{\beta}{2\pi f_T c_{\text{iss}}} + \frac{\gamma}{2\pi f_T} + \frac{\delta c_{\text{iss}}}{2\pi f_T} + \epsilon$$
 $c_{\text{iss}Opt} = \sqrt{\frac{2\pi f_T \alpha + \beta}{\delta}}.$

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

NOT If ϵ exceeds the requirement for the total squared weighted output noise.

FEASIBLE: If $f_T = \frac{g_m}{2\pi c_{iss}}$ is too low:

$$e_{\ell}^2 = \frac{\alpha}{c_{\text{iss}}} + \frac{\beta}{2\pi f_T c_{\text{iss}}} + \frac{\gamma}{2\pi f_T} + \frac{\delta c_{\text{iss}}}{2\pi f_T} + \epsilon$$
 $c_{\text{issOpt}} = \sqrt{\frac{2\pi f_T \alpha + \beta}{\delta}}.$

Lowest noise: $e_{\ell}^2 = \frac{\alpha}{c_{\rm iss_{Opt}}} + \frac{\beta}{2\pi f_{T_{\rm max}} c_{\rm iss_{Opt}}} + \frac{\gamma}{2\pi f_{T_{\rm max}}} + \frac{\delta c_{\rm iss_{Opt}}}{2\pi f_{T_{\rm max}}} + \epsilon$

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

NOT If ϵ exceeds the requirement for the total squared weighted output noise.

FEASIBLE: If $f_T = \frac{g_m}{2\pi c_{iss}}$ is too low:

$$e_{\ell}^2 = \frac{\alpha}{c_{\text{iss}}} + \frac{\beta}{2\pi f_T c_{\text{iss}}} + \frac{\gamma}{2\pi f_T} + \frac{\delta c_{\text{iss}}}{2\pi f_T} + \epsilon$$
 $c_{\text{issOpt}} = \sqrt{\frac{2\pi f_T \alpha + \beta}{\delta}}.$

Lowest noise: $e_{\ell}^2 = \frac{\alpha}{c_{\rm iss_{Opt}}} + \frac{\beta}{2\pi f_{T_{\rm max}} c_{\rm iss_{Opt}}} + \frac{\gamma}{2\pi f_{T_{\rm max}}} + \frac{\delta c_{\rm iss_{Opt}}}{2\pi f_{T_{\rm max}}} + \epsilon$

Area and current limitations may put extra contraints to the feasibility.

Total squared weighted output noise:

$$e_{\ell}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m} + \epsilon$$

MOS contribution to squared weighted output noise:

$$e_{\ell M}^2 = \alpha \frac{1}{c_{iss}} + \beta \frac{1}{g_m} + \gamma \frac{c_{iss}}{g_m} + \delta \frac{c_{iss}^2}{g_m}$$

NOT If ϵ exceeds the requirement for the total squared weighted output noise.

FEASIBLE: If $f_T = \frac{g_m}{2\pi c_{iss}}$ is too low:

$$e_{\ell}^2 = \frac{\alpha}{c_{\text{iss}}} + \frac{\beta}{2\pi f_T c_{\text{iss}}} + \frac{\gamma}{2\pi f_T} + \frac{\delta c_{\text{iss}}}{2\pi f_T} + \epsilon$$
 $c_{\text{issOpt}} = \sqrt{\frac{2\pi f_T \alpha + \beta}{\delta}}.$

Lowest noise: $e_{\ell}^2 = \frac{\alpha}{c_{\rm iss_{Opt}}} + \frac{\beta}{2\pi f_{T_{\rm max}} c_{\rm iss_{Opt}}} + \frac{\gamma}{2\pi f_{T_{\rm max}}} + \frac{\delta c_{\rm iss_{Opt}}}{2\pi f_{T_{\rm max}}} + \epsilon$

Area and current limitations may put extra contraints to the feasibility.

$$c_{\text{iss}} = \chi C_{\text{OX}} W L + W \left(C_{\text{GSO}} + C_{\text{GDO}} \right) + 2L C_{\text{GBO}}$$

$$c_{\text{iss}} = \chi C_{\text{OX}} W L + W (C_{\text{GSO}} + C_{\text{GDO}}) + 2L C_{\text{GBO}}$$

$$\chi = \frac{2 - x}{3} + \frac{(1 + x)(n - 1)}{3n}$$

$$c_{\text{iss}} = \chi C_{\text{OX}} W L + W \left(C_{\text{GSO}} + C_{\text{GDO}} \right) + 2L C_{\text{GBO}}$$

$$\chi = \frac{2 - x}{3} + \frac{(1 + x)(n - 1)}{3n}$$

$$x = \frac{\sqrt{IC + 0.25} + 1.5}{\left(\sqrt{IC + 0.25} + 0.5\right)^2}$$

$$c_{\text{iss}} = \chi C_{\text{OX}} W L + W \left(C_{\text{GSO}} + C_{\text{GDO}} \right) + 2L C_{\text{GBO}}$$

$$\chi = \frac{2 - x}{3} + \frac{(1 + x)(n - 1)}{3n}$$

$$x = \frac{\sqrt{IC + 0.25} + 1.5}{\left(\sqrt{IC + 0.25} + 0.5\right)^2}$$

$$I_{\text{DS}} = IC \frac{W}{L} I_0 \qquad I_0 \triangleq 2n\mu_0 C_{\text{OX}} V_T^2$$

$$c_{\text{iss}} = \chi C_{\text{OX}} W L + W \left(C_{\text{GSO}} + C_{\text{GDO}} \right) + 2L C_{\text{GBO}}$$

$$\chi = \frac{2 - x}{3} + \frac{(1 + x)(n - 1)}{3n}$$

$$x = \frac{\sqrt{IC + 0.25} + 1.5}{\left(\sqrt{IC + 0.25} + 0.5\right)^2}$$

$$I_{\text{DS}} = IC \frac{W}{L} I_0 \qquad I_0 \triangleq 2n\mu_0 C_{\text{OX}} V_T^2$$

$$\frac{g_m}{I_{\text{DS}}} = \frac{1}{nV_T \sqrt{IC \left(1 + \frac{IC}{IC_{\text{crit}}}\right) + 0.5 \sqrt{IC \left(1 + \frac{IC}{IC_{\text{crit}}}\right) + 1}}}$$

$$c_{\text{iss}} = \chi C_{\text{OX}} W L + W \left(C_{\text{GSO}} + C_{\text{GDO}} \right) + 2L C_{\text{GBO}}$$

$$\chi = \frac{2 - x}{3} + \frac{(1 + x)(n - 1)}{3n}$$

$$x = \frac{\sqrt{IC + 0.25} + 1.5}{\left(\sqrt{IC + 0.25} + 0.5\right)^2}$$

$$I_{\text{DS}} = IC \frac{W}{L} I_0 \qquad I_0 \triangleq 2n\mu_0 C_{\text{OX}} V_T^2$$

$$\frac{g_m}{I_{DS}} = \frac{1}{nV_T \sqrt{IC\left(1 + \frac{IC}{IC_{crit}}\right) + 0.5\sqrt{IC\left(1 + \frac{IC}{IC_{crit}}\right)} + 1}}$$

$$IC_{\text{crit}} = (4nV_T\theta)^{-2}$$

$$c_{\text{iss}} = \chi C_{\text{OX}} W L + W \left(C_{\text{GSO}} + C_{\text{GDO}} \right) + 2L C_{\text{GBO}} \qquad c_{\text{iss}} = aW L + bW + cL$$

$$\chi = \frac{2 - x}{3} + \frac{(1 + x)(n - 1)}{3n} \qquad g_m = d\frac{W}{L}$$

$$x = \frac{\sqrt{IC + 0.25} + 1.5}{\left(\sqrt{IC + 0.25} + 0.5\right)^2}$$

$$I_{\text{DS}} = IC\frac{W}{L}I_0 \qquad I_0 \triangleq 2n\mu_0 C_{\text{OX}} V_T^2$$

$$\frac{g_m}{I_{DS}} = \frac{1}{nV_T \sqrt{IC\left(1 + \frac{IC}{IC_{crit}}\right) + 0.5\sqrt{IC\left(1 + \frac{IC}{IC_{crit}}\right)} + 1}}$$

$$IC_{\text{crit}} = (4nV_T\theta)^{-2}$$

$$c_{\text{iss}} = \chi C_{\text{OX}} W L + W \left(C_{\text{GSO}} + C_{\text{GDO}} \right) + 2L C_{\text{GBO}}$$

$$\chi = \frac{2 - x}{3} + \frac{(1 + x)(n - 1)}{3n}$$

$$x = \frac{\sqrt{IC + 0.25} + 1.5}{\left(\sqrt{IC + 0.25} + 0.5\right)^2}$$

$$I_{\text{DS}} = IC \frac{W}{L} I_0 \qquad I_0 \triangleq 2n\mu_0 C_{\text{OX}} V_T^2$$

$$\frac{g_m}{I_{DS}} = \frac{1}{nV_T \sqrt{IC\left(1 + \frac{IC}{IC_{crit}}\right) + 0.5\sqrt{IC\left(1 + \frac{IC}{IC_{crit}}\right)} + 1}}$$

$$IC_{\text{crit}} = (4nV_T\theta)^{-2}$$

$$c_{\text{iss}} = aWL + bW + cL$$

$$g_m = d\frac{W}{L}$$

$$a = \chi C_{\text{OX}}$$

$$b = C_{\text{GSO}} + C_{\text{GDO}}$$

$$c = 2C_{\text{GBO}}$$

$$d = \frac{2\mu_0 C_{\text{OX}}IC}{\sqrt{IC\left(1 + \frac{IC}{IC_{\text{crit}}}\right) + 0.5\sqrt{IC\left(1 + \frac{IC}{IC_{\text{crit}}}\right)} + 1}}$$

$$c_{\text{iss}} = \chi C_{\text{OX}} W L + W \left(C_{\text{GSO}} + C_{\text{GDO}} \right) + 2L C_{\text{GBO}}$$

$$\chi = \frac{2 - x}{3} + \frac{(1 + x)(n - 1)}{3n}$$

$$x = \frac{\sqrt{IC + 0.25} + 1.5}{\left(\sqrt{IC + 0.25} + 0.5\right)^2}$$

$$I_{\text{DS}} = IC \frac{W}{L} I_0 \qquad I_0 \triangleq 2n\mu_0 C_{\text{OX}} V_T^2$$

$$\frac{g_m}{I_{DS}} = \frac{1}{nV_T \sqrt{IC\left(1 + \frac{IC}{IC_{crit}}\right) + 0.5\sqrt{IC\left(1 + \frac{IC}{IC_{crit}}\right)} + 1}}$$

$$IC_{\text{crit}} = (4nV_T\theta)^{-2}$$

$$\begin{split} c_{\rm iss} &= aWL + bW + cL \\ g_m &= d\frac{W}{L} \\ a &= \chi C_{\rm OX} \\ b &= C_{\rm GSO} + C_{\rm GDO} \\ c &= 2C_{\rm GBO} \\ d &= \frac{2\mu_0 C_{\rm OX}IC}{\sqrt{IC\left(1 + \frac{IC}{IC_{\rm crit}}\right) + 0.5\sqrt{IC\left(1 + \frac{IC}{IC_{\rm crit}}\right)} + 1}} \\ W &= \frac{c\,d + b\,g_m}{2a\,d} \left(\sqrt{1 + \frac{4a\,d\,g_m c_{\rm iss}}{\left(c\,d + b\,g_m\right)^2} - 1}\right) \approx \sqrt{\frac{g_m c_{\rm iss}}{a\,d}} \\ L &= \frac{c\,d + b\,g_m}{2a\,g_m} \left(\sqrt{1 + \frac{4a\,d\,g_m c_{\rm iss}}{\left(c\,d + b\,g_m\right)^2} - 1}\right) \approx \sqrt{\frac{d\,c_{\rm iss}}{a\,g_m}} \\ I_{\rm DS} &= \frac{1}{g_m/I_{\rm DS}}g_m \end{split}$$

$$c_{\text{iss}} = \chi C_{\text{OX}} W L + W \left(C_{\text{GSO}} + C_{\text{GDO}} \right) + 2L C_{\text{GBO}}$$

$$\chi = \frac{2 - x}{3} + \frac{(1 + x)(n - 1)}{3n}$$

$$x = \frac{\sqrt{IC + 0.25} + 1.5}{\left(\sqrt{IC + 0.25} + 0.5\right)^2}$$

$$I_{\text{DS}} = IC \frac{W}{I} I_0 \qquad I_0 \triangleq 2n\mu_0 C_{\text{OX}} V_T^2$$

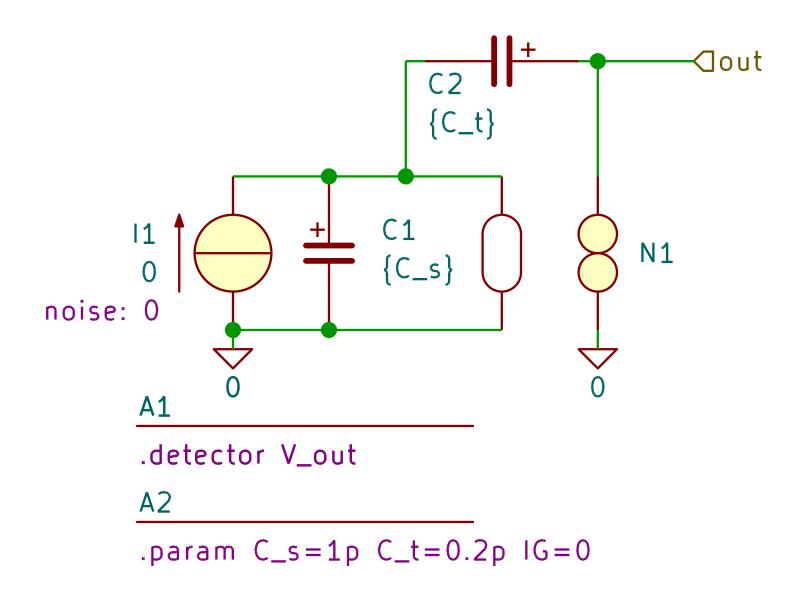
$$\frac{g_m}{I_{DS}} = \frac{1}{nV_T \sqrt{IC\left(1 + \frac{IC}{IC_{crit}}\right) + 0.5\sqrt{IC\left(1 + \frac{IC}{IC_{crit}}\right)} + 1}}$$

$$IC_{\text{crit}} = (4nV_T\theta)^{-2}$$

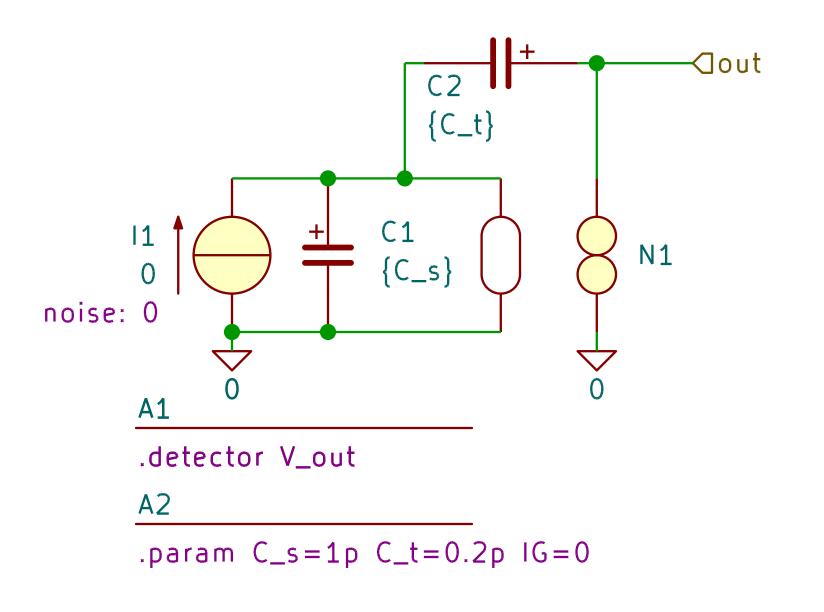
$$\begin{split} c_{\mathrm{iss}} &= aWL + bW + cL \\ g_m &= d\frac{W}{L} \\ a &= \chi C_{\mathrm{OX}} \\ b &= C_{\mathrm{GSO}} + C_{\mathrm{GDO}} \\ c &= 2C_{\mathrm{GBO}} \\ d &= \frac{2\mu_0 C_{\mathrm{OX}} IC}{\sqrt{IC\left(1 + \frac{IC}{IC_{\mathrm{crit}}}\right) + 0.5\sqrt{IC\left(1 + \frac{IC}{IC_{\mathrm{crit}}}\right) + 1}} \\ W &= \frac{c\,d + b\,g_m}{2a\,d} \left(\sqrt{1 + \frac{4a\,d\,g_m c_{\mathrm{iss}}}{\left(c\,d + b\,g_m\right)^2} - 1\right) \approx \sqrt{\frac{g_m c_{\mathrm{iss}}}{a\,d}} \\ L &= \frac{c\,d + b\,g_m}{2a\,g_m} \left(\sqrt{1 + \frac{4a\,d\,g_m c_{\mathrm{iss}}}{\left(c\,d + b\,g_m\right)^2} - 1\right) \approx \sqrt{\frac{d\,c_{\mathrm{iss}}}{a\,g_m}} \\ I_{\mathrm{DS}} &= \frac{1}{g_m/I_{\mathrm{DS}}} g_m \end{split}$$

Transimpedance integrator with capacitive source

Transimpedance integrator with capacitive source



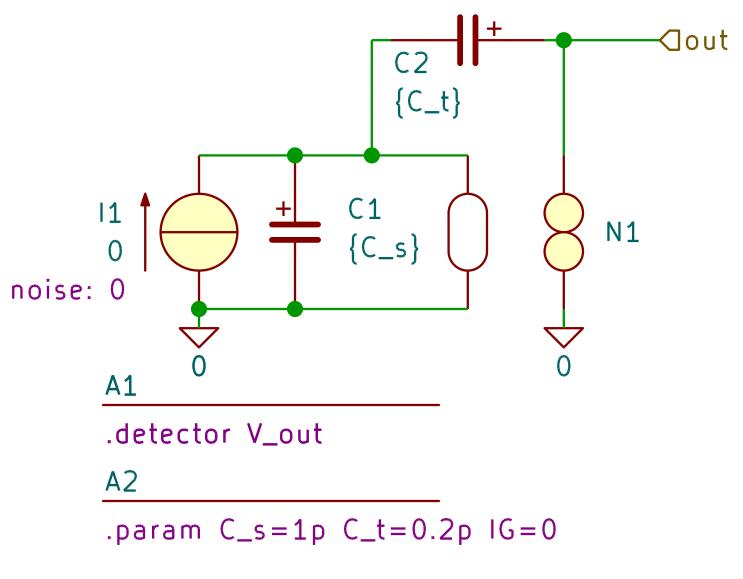
Transimpedance integrator with capacitive source



Coefficients of the symbolic noise equition (determined with SLiCAP):

$$\begin{array}{ll} \mathbf{term} & \mathbf{coefficient} \\ \frac{1}{c_{iss}} & \alpha = \int\limits_{f_{min}}^{f_{max}} \frac{K_F \chi f^{-A_F} (C_s + C_t)^2}{C_{OX} C_t^2} \, df \\ \frac{1}{g_m} & \beta = \int\limits_{f_{min}}^{f_{max}} \frac{4\Gamma T k n (C_s + C_t)^2}{C_t^2} \, df \\ \frac{c_{iss}}{g_m} & \gamma = \int\limits_{f_{min}}^{f_{max}} \frac{8\Gamma T k n (C_s + C_t)}{C_t^2} \, df \\ \frac{c_{iss}^2}{g_m} & \delta = \int\limits_{f_{min}}^{f_{max}} \frac{4\Gamma T k n}{C_t^2} \, df \\ 1 & \epsilon = 0 \end{array}$$

Transimpedance integrator with capacitive source



If we ignore flicker noise:

$$c_{\text{issopt}} = \sqrt{\frac{\beta}{\delta}} = C_s + C_t = 1.2 \text{ pF}$$

$$v_{n_{\text{out}}}^2 = \frac{16kTn\Gamma}{g_m} \left(\frac{C_s + C_t}{C_t}\right)^2 (f_{\text{max}} - f_{\text{min}})$$

Coefficients of the symbolic noise equition (determined with SLiCAP):

term coefficient
$$\frac{1}{c_{iss}} \qquad \alpha = \int_{f_{min}}^{f_{max}} \frac{K_F \chi f^{-A_F} (C_s + C_t)^2}{C_{OX} C_t^2} df$$

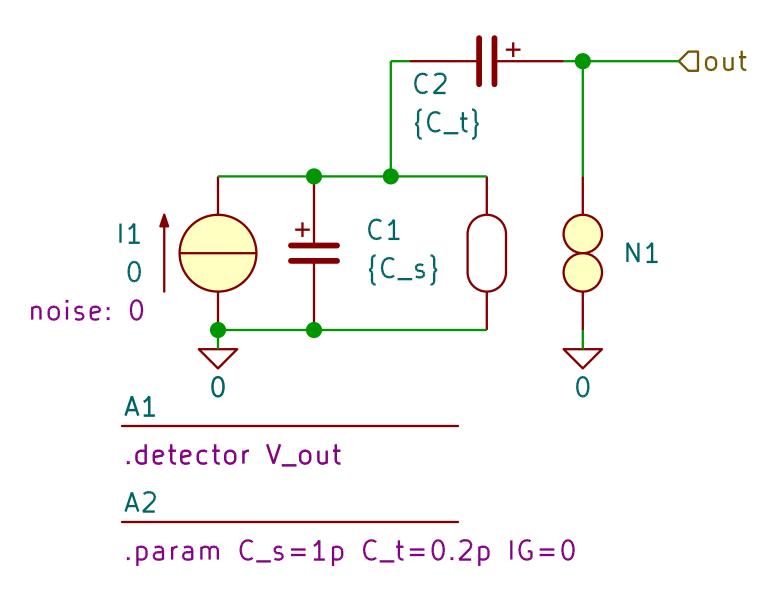
$$\frac{1}{g_m} \qquad \beta = \int_{f_{min}}^{f_{max}} \frac{4\Gamma T k n (C_s + C_t)^2}{C_t^2} df$$

$$\frac{c_{iss}}{g_m} \qquad \gamma = \int_{f_{min}}^{f_{max}} \frac{8\Gamma T k n (C_s + C_t)}{C_t^2} df$$

$$\frac{c_{iss}^2}{g_m} \qquad \delta = \int_{f_{min}}^{f_{max}} \frac{4\Gamma T k n}{C_t^2} df$$

$$1 \qquad \epsilon = 0$$

Transimpedance integrator with capacitive source



If we ignore flicker noise:

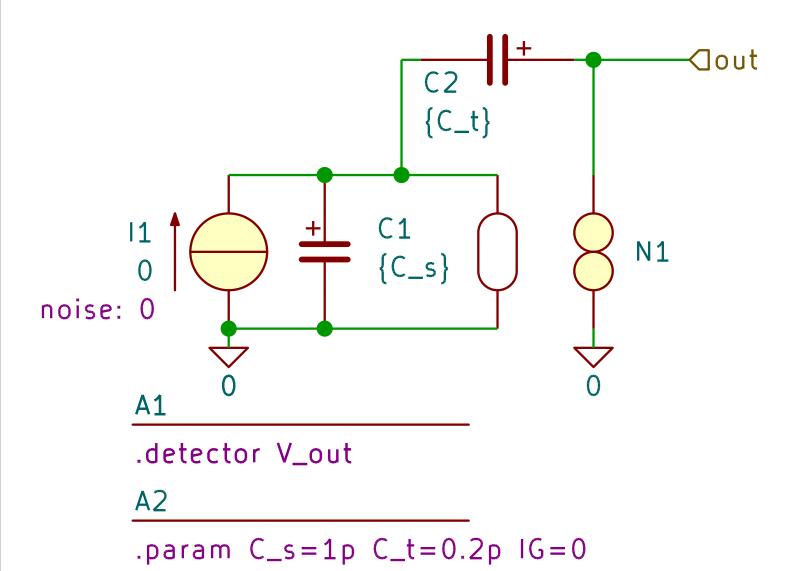
$$c_{\text{issopt}} = \sqrt{\frac{\beta}{\delta}} = C_s + C_t = 1.2 \text{ pF}$$

$$v_{n_{\text{out}}}^2 = \frac{16kTn\Gamma}{g_m} \left(\frac{C_s + C_t}{C_t}\right)^2 (f_{\text{max}} - f_{\text{min}})$$

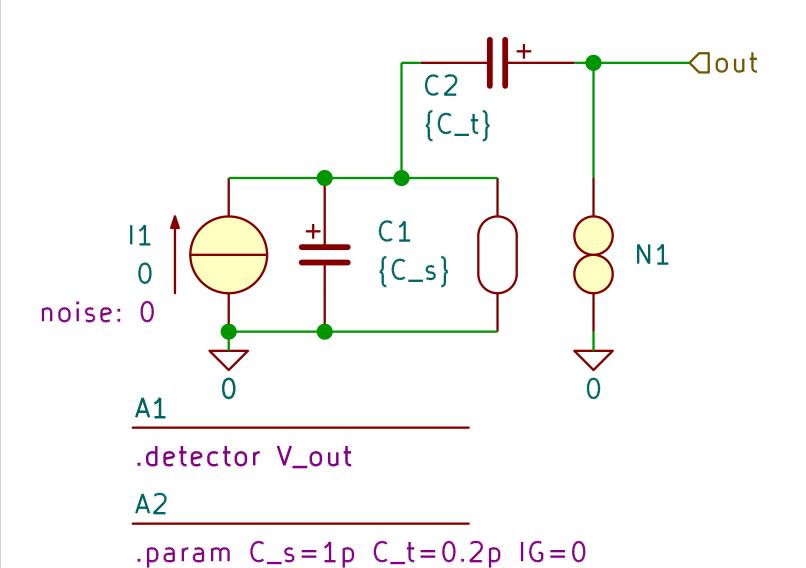
Coefficients of the symbolic noise equition (determined with SLiCAP):

coefficient term $\alpha = \int_{f_{min}}^{f_{max}} \frac{K_F \chi f^{-A_F} (C_s + C_t)^2}{C_{OX} C_t^2} df$ $\beta = \int_{f_{max}}^{f_{max}} \frac{4\Gamma T k n (C_s + C_t)^2}{C_t^2} df$ $\int_{r}^{f_{min}} \frac{8\Gamma T k n (C_s + C_t)}{C_t^2} df$

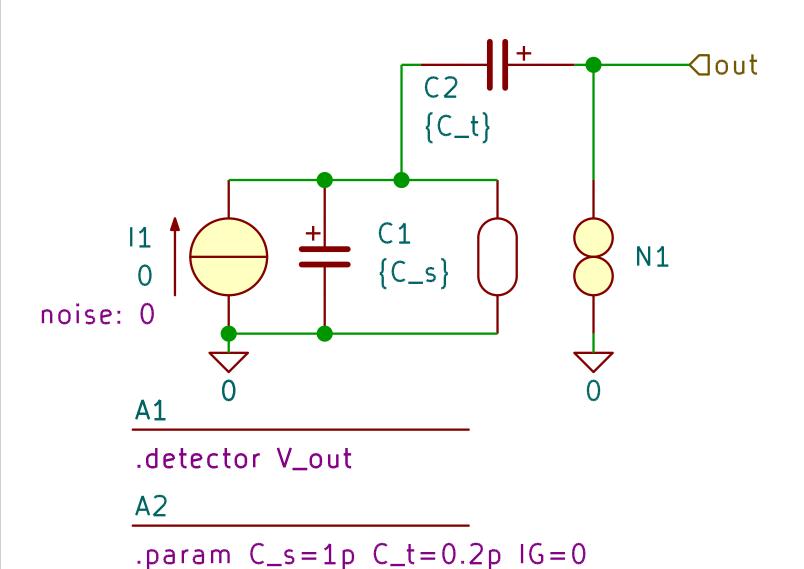
1. Select CMOS process and fit EKV parameters to BSIM



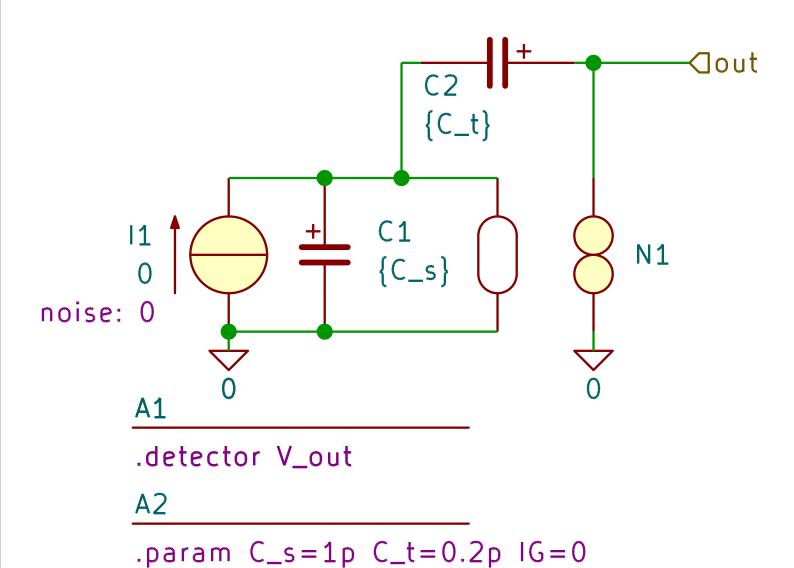
- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller



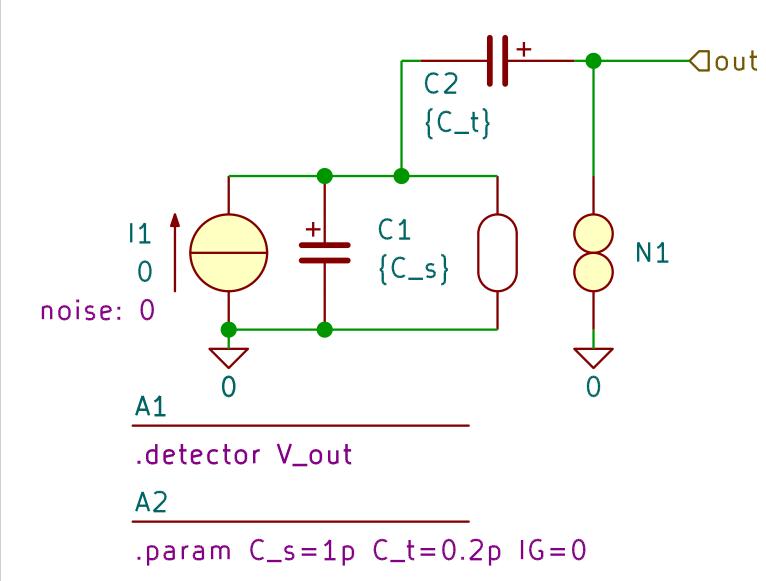
- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)



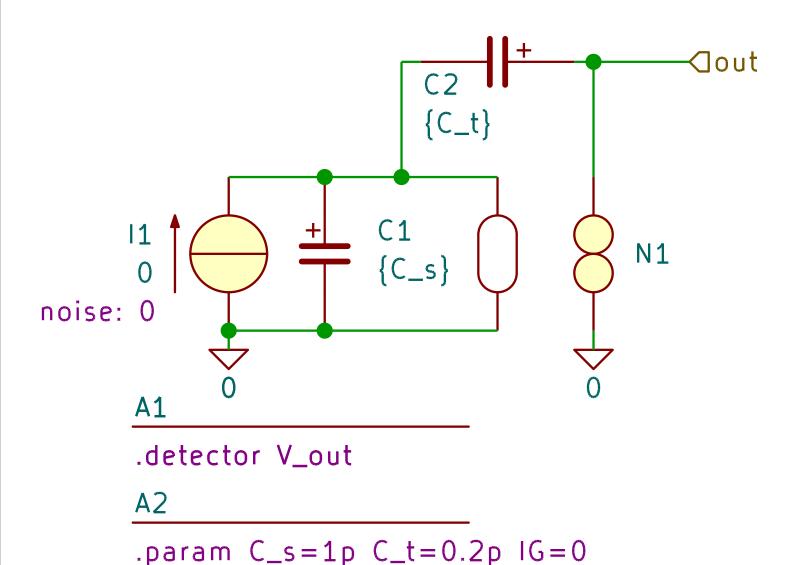
- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)
- 4. Define technology requirements (channel type, minimum and maximum geometry)



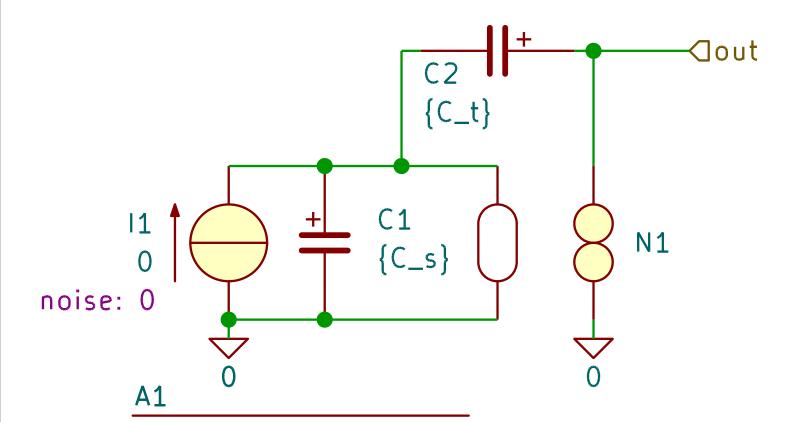
- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)
- 4. Define technology requirements (channel type, minimum and maximum geometry)
- 5. Define circuit requirements (inversion coefficient or gm/ID ratio, and current budget)



- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)
- 4. Define technology requirements (channel type, minimum and maximum geometry)
- 5. Define circuit requirements (inversion coefficient or gm/ID ratio, and current budget)
- 6. Run the design automation script



- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)
- 4. Define technology requirements (channel type, minimum and maximum geometry)
- 5. Define circuit requirements (inversion coefficient or gm/ID ratio, and current budget)
- 6. Run the design automation script
- 7. Select one valid option for design



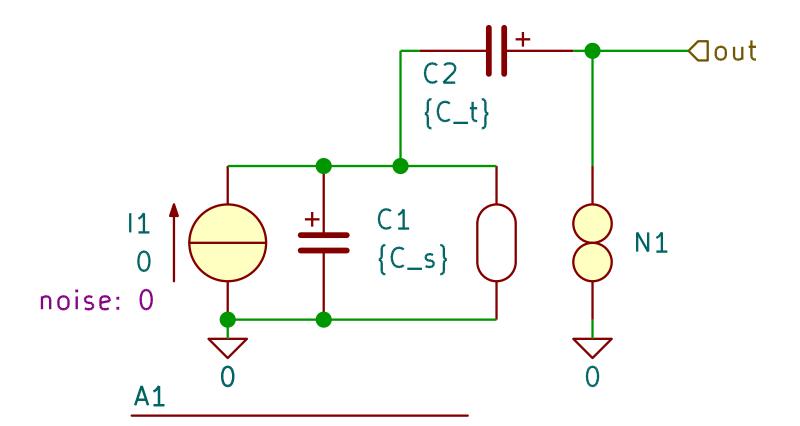
.param $C_s = 1p C_t = 0.2p IG = 0$

.detector V_out

A2

- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)
- 4. Define technology requirements (channel type, minimum and maximum geometry)
- 5. Define circuit requirements (inversion coefficient or gm/ID ratio, and current budget)
- 6. Run the design automation script
- 7. Select one valid option for design

SLiCAP replaces the nullor with an N-channel or a P-channel noisy nullor and evaluates W, L, and I_{DS} for six scenarios for the selected inversion coefficient or gm/ID ratio:



.param $C_s = 1p C_t = 0.2p IG = 0$

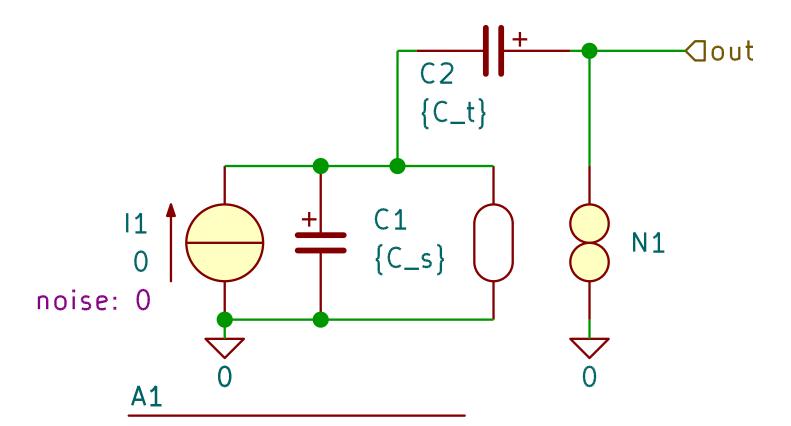
.detector V_out

A2

- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)
- 4. Define technology requirements (channel type, minimum and maximum geometry)
- 5. Define circuit requirements (inversion coefficient or gm/ID ratio, and current budget)
- 6. Run the design automation script
- 7. Select one valid option for design

SLiCAP replaces the nullor with an N-channel or a P-channel noisy nullor and evaluates W, L, and I_{DS} for six scenarios for the selected inversion coefficient or gm/ID ratio:

1. Mininum noise at maximum inversion level



.param $C_s = 1p C_t = 0.2p IG = 0$

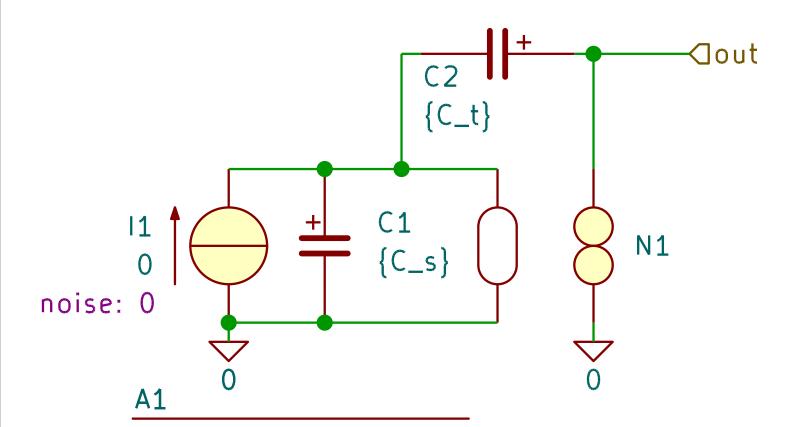
.detector V_out

A2

- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)
- 4. Define technology requirements (channel type, minimum and maximum geometry)
- 5. Define circuit requirements (inversion coefficient or gm/ID ratio, and current budget)
- 6. Run the design automation script
- 7. Select one valid option for design

SLiCAP replaces the nullor with an N-channel or a P-channel noisy nullor and evaluates W, L, and I_{DS} for six scenarios for the selected inversion coefficient or gm/ID ratio:

- 1. Mininum noise at maximum inversion level
- 2. Minimum current to meet the noise specification



.param $C_s = 1p C_t = 0.2p IG = 0$

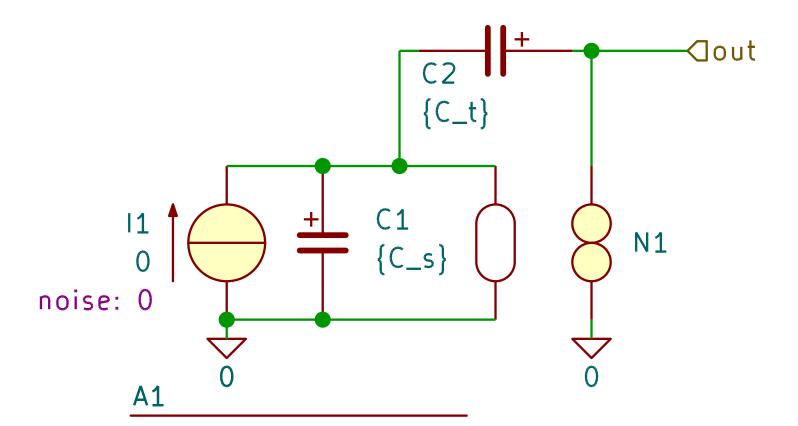
.detector V_out

A2

- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)
- 4. Define technology requirements (channel type, minimum and maximum geometry)
- 5. Define circuit requirements (inversion coefficient or gm/ID ratio, and current budget)
- 6. Run the design automation script
- 7. Select one valid option for design

SLiCAP replaces the nullor with an N-channel or a P-channel noisy nullor and evaluates W, L, and I_{DS} for six scenarios for the selected inversion coefficient or gm/ID ratio:

- 1. Mininum noise at maximum inversion level
- 2. Minimum current to meet the noise specification
- 3. Minimum cut-off frequency to meet the noise specification



.param $C_s = 1p C_t = 0.2p IG = 0$

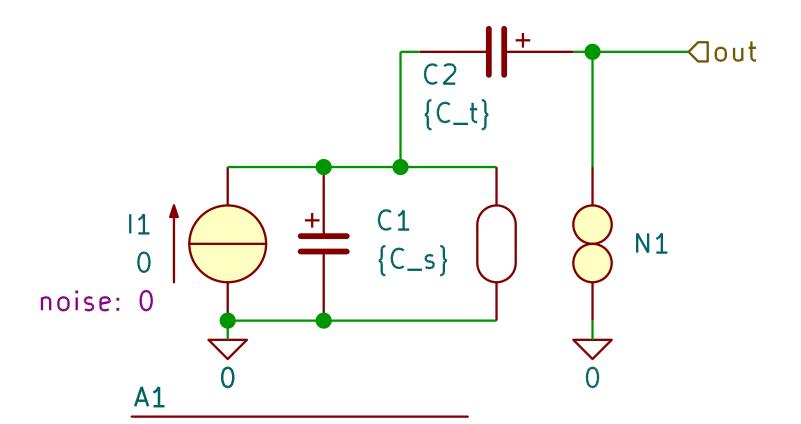
.detector V_out

A2

- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)
- 4. Define technology requirements (channel type, minimum and maximum geometry)
- 5. Define circuit requirements (inversion coefficient or gm/ID ratio, and current budget)
- 6. Run the design automation script
- 7. Select one valid option for design

SLiCAP replaces the nullor with an N-channel or a P-channel noisy nullor and evaluates W, L, and I_{DS} for six scenarios for the selected inversion coefficient or gm/ID ratio:

- 1. Mininum noise at maximum inversion level
- 2. Minimum current to meet the noise specification
- 3. Minimum cut-off frequency to meet the noise specification
- 4. Minimum product of g_m and c_{iss} to meet the noise specification



.param $C_s = 1p C_t = 0.2p IG = 0$

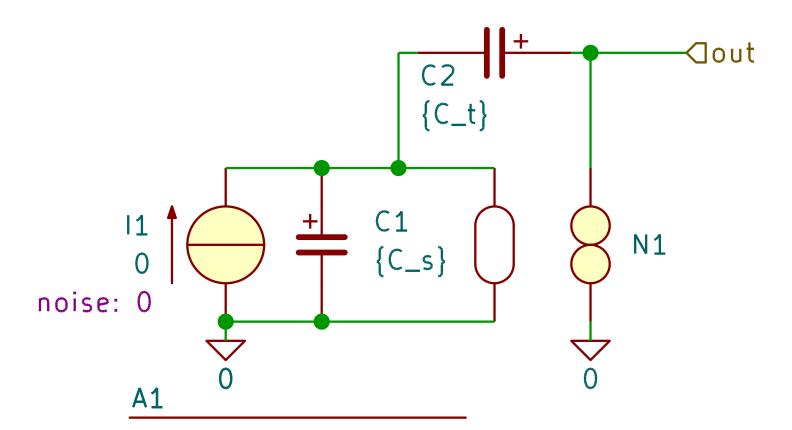
.detector V_out

A2

- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)
- 4. Define technology requirements (channel type, minimum and maximum geometry)
- 5. Define circuit requirements (inversion coefficient or gm/ID ratio, and current budget)
- 6. Run the design automation script
- 7. Select one valid option for design

SLiCAP replaces the nullor with an N-channel or a P-channel noisy nullor and evaluates W, L, and I_{DS} for six scenarios for the selected inversion coefficient or gm/ID ratio:

- 1. Mininum noise at maximum inversion level
- 2. Minimum current to meet the noise specification
- 3. Minimum cut-off frequency to meet the noise specification
- 4. Minimum product of g_m and c_{iss} to meet the noise specification
- 5. Minimum area at a given current budget to meet the noise specification



.param $C_s = 1p C_t = 0.2p IG = 0$

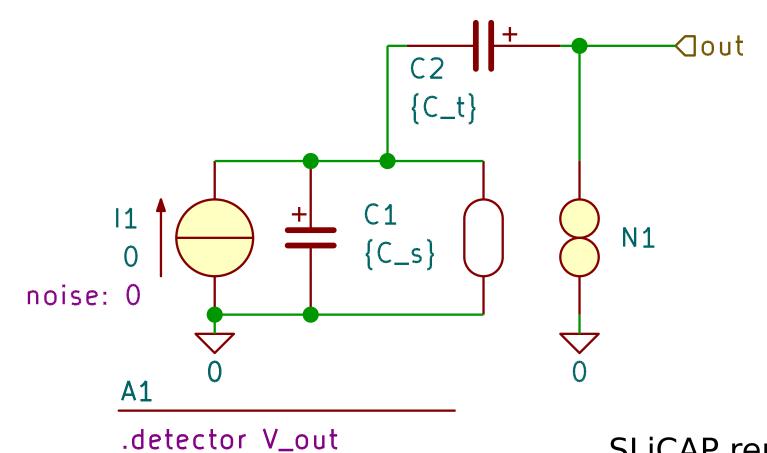
.detector V_out

A2

- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)
- 4. Define technology requirements (channel type, minimum and maximum geometry)
- 5. Define circuit requirements (inversion coefficient or gm/ID ratio, and current budget)
- 6. Run the design automation script
- 7. Select one valid option for design

SLiCAP replaces the nullor with an N-channel or a P-channel noisy nullor and evaluates W, L, and I_{DS} for six scenarios for the selected inversion coefficient or gm/ID ratio:

- 1. Mininum noise at maximum inversion level
- 2. Minimum current to meet the noise specification
- 3. Minimum cut-off frequency to meet the noise specification
- 4. Minimum product of g_m and c_{iss} to meet the noise specification
- 5. Minimum area at a given current budget to meet the noise specification
- 6. Maximum area at a given current budget to meet the noise specification



.param $C_s = 1p C_t = 0.2p IG = 0$

A2

- 1. Select CMOS process and fit EKV parameters to BSIM
- 2. Create KiCAD amplifier circuit with nullor as controller
- 3. Define noise requirements (frequency range and budgets)
- 4. Define technology requirements (channel type, minimum and maximum geometry)
- 5. Define circuit requirements (inversion coefficient or gm/ID ratio, and current budget)
- 6. Run the design automation script
- 7. Select one valid option for design

SLiCAP replaces the nullor with an N-channel or a P-channel noisy nullor and evaluates W, L, and I_{DS} for six scenarios for the selected inversion coefficient or gm/ID ratio:

- 1. Mininum noise at maximum inversion level
- 2. Minimum current to meet the noise specification
- 3. Minimum cut-off frequency to meet the noise specification
- 4. Minimum product of g_m and c_{iss} to meet the noise specification
- 5. Minimum area at a given current budget to meet the noise specification
- 6. Maximum area at a given current budget to meet the noise specification