Structured Electronic Design Controller Design

Input stage

Input stage

Performance aspect: noise

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like)

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

Number of stages

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

Number of stages

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

Number of stages

2

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

Number of stages

2

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

Number of stages

1

2

Noise and VI-drive can be met with single stage

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

Number of stages

2

1

Noise and VI-drive can be met with single stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

Number of stages

1

Noise and VI-drive can be met with single stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK? 2

noise performance can be met

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

1

Noise and VI-drive can be met with single stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

Number of stages

2

noise performance can be met 1-st stage can drive 2-nd stage

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

1

Noise and VI-drive can be met with single stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

Number of stages

2

noise performance can be met 1-st stage can drive 2-nd stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

1

Noise and VI-drive can be met with single stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

Number of stages

2

noise performance can be met 1-st stage can drive 2-nd stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

n > 2

noise performance can be met

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

1

Noise and VI-drive can be met with single stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

Number of stages

2

noise performance can be met 1-st stage can drive 2-nd stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

n > 2

noise performance can be met i-1-th stage can drive i-th stage

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

1

Noise and VI-drive can be met with single stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

Number of stages

2

noise performance can be met 1-st stage can drive 2-nd stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

n > 2

noise performance can be met i-1-th stage can drive i-th stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

Input stage

Performance aspect: noise Stage type: CS or balanced (best nullor-like) minimizes noise contributions of other stages Determine design limits for W, L, W/L and I_D

Output stage

Performance aspects: VI-drive capability and power efficiency Stage type: complementary parallel CS nullor like: minimizes distortion contributions of other stages complementary parallel: high power efficiency Determine design limits for W_P and W_N and I_{DQ}

1

Noise and VI-drive can be met with single stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

Number of stages

2

noise performance can be met 1-st stage can drive 2-nd stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK?

n > 2

noise performance can be met i-1-th stage can drive i-th stage

Midband loop gain OK? Loop gain-poles product OK? Diff. error to loop gain ratio OK? Structured Electronic Design Controller Design