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How do these model parameters depend on the device geometry and the operating conditions?
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MOS EKV model

1995: C.C. Enz, F. Krummenacher and E.A. Vittoz

Models all operating regions
Ir Ve, Vs, Vp) from weak inversion to strong inversion
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MOS EKV model

1995: C.C. Enz, F. Krummenacher and E.A. Vittoz

Models all operating regions

Ir Ve, Vs, Vp) from weak inversion to strong inversion
G ‘ Gate, source and drain voltages
O @ with respect to the bulk

Ir Va,Vs,Vp) Symmetrical charge-controlled model
g —> D Technology current: I £ Qn,LLOCé)XU% A]
© q> © Cox = F=+ Fm™]
B B
o O

(c) 2020 A.J.M. Montagne 69



MOS EKV model

1995: C.C. Enz, F. Krummenacher and E.A. Vittoz

Models all operating regions

Ir Ve, Vs, Vp) from weak inversion to strong inversion
G ‘ Gate, source and drain voltages
O @ with respect to the bulk

Ir Va,Vs,Vp) Symmetrical charge-controlled model
g —> D Technology current: I £ Qn,LLOCé)XU% A]
o @ © Cox = %= [Fm™

Ur = =L [V]

B B
0 0

(c) 2020 A.J.M. Montagne 70



MOS EKV model

1995: C.C. Enz, F. Krummenacher and E.A. Vittoz
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MOS EKV model
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MOS EKV model

1995: C.C. Enz, F. Krummenacher and E.A. Vittoz
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MOS EKV model

1995: C.C. Enz, F. Krummenacher and E.A. Vittoz

Ir (Va, Vs, Vp) F(z) = (In(1+exp(3)))" [
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MOS EKV model

1995: C.C. Enz, F. Krummenacher and E.A. Vittoz

AN 2

Ir (Va,Vs, V) F(z)=(n(1+exp(3)))" [
-« this yields: exp(x) if x <0,

(%)2 it z > 0.
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MOS EKV model

1995: C.C. Enz, F. Krummenacher and E.A. Vittoz

A\ 2

Ir (Va,Vs, V) F(z)=(n(1+exp(3)))" [
-« this yields: exp(x) if x <0,

(%)2 if x > 0.

N

Forward and reverse inversion coefficient:
Ir (Vg,Vs, VD) R
E . G—VTo—NVs D
ICFaR o F ( ’rLUT ) [_]
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MOS EKV model

1995: C.C. Enz, F. Krummenacher and E.A. Vittoz

AN

IF (VG7 V57 VD)

oW

o 0

F(z) = (In(14exp(£)))” [
this yields: exp(x) if x <0,
(%)2 it x > 0.

Forward and reverse inversion coefficient:
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Forward and reverse current:
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MOS EKV model

1995: C.C. Enz, F. Krummenacher and E.A. Vittoz

AN

IF (VG7 V57 VD)
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this yields: exp(x) if x <0,
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Forward and reverse inversion coefficient:
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Forward and reverse current:
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Transconductance factor:
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MOS EKV model

1995: C.C. Enz, F. Krummenacher and E.A. Vittoz
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MOS EKV model
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MOS EKV model
1995: C.C. Enz, F. Krummenacher and E.A. Vittoz

CLM modeled as early voltage
Ir Ve, Vs, Vp) in bipolar transistors
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MOS EKV model

1995: C.C. Enz, F. Krummenacher and E.A. Vittoz

CLM modeled as early voltage

Ir Ve, Vs, Vp) in bipolar transistors
G Short-channel effects (VFMR, VS)
o <D modeled as reduction of the

transconductance factor
In (Va,Vs, Vp)
—

S D
O O
B B
O
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MOS EKV model
1995: C.C. Enz, F. Krummenacher and E.A. Vittoz

CLM modeled as early voltage

Ir Ve, Vs, Vp) in bipolar transistors
G Short-channel effects (VFMR, VS)
o <D modeled as reduction of the

transconductance factor
IR (VG7 VS» VD) The critical inversion coefficient
e IS the value of the inversion coefficient

<S> <D g) at which the short-channel effects set in
B B
O
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MOS EKV model
1995: C.C. Enz, F. Krummenacher and E.A. Vittoz

CLM modeled as early voltage

Ir Ve, Vs, Vp) in bipolar transistors
G Short-channel effects (VFMR, VS)
o <D modeled as reduction of the
transconductance factor
IR (VG7 VS» VD) The critical inversion coefficient
—_— IS the value of the inversion coefficient
S q> D at which the short-channel effects set in
O O
ICcoRriT = . > |-
1
(4nUT (9+ LECRIT ))
B B
O

(c) 2020 A.J.M. Montagne 87



MOS EKV model
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transconductance factor
IR (VG7 VS» VD) The critical inversion coefficient
—_— IS the value of the inversion coefficient
S q> D at which the short-channel effects set in
O O
ICcoRriT = L > |-
(4nUT (9+ L Ecl’RIT ))
B B VFMR coefﬁcientT
O

(c) 2020 A.J.M. Montagne 88



MOS EKV model
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MOS EKV model
1995: C.C. Enz, F. Krummenacher and E.A. Vittoz
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J_ © Above critical inversion the small-signal transconductance
does not longer significantly increase with the drain current
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MOS EKV model
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MOS EKV model

Small-signhal model
parameters can be expressed
In terms of;
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MOS EKV model

Small-signal model
parameters can be expressed
in terms of:

Technology parameters
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MOS EKV model

Small-signal model
parameters can be expressed
in terms of:

Technology parameters
Geometry parameters
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Small-signal model
parameters can be expressed
in terms of:

Technology parameters
Geometry parameters
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Small-signal model
parameters can be expressed
in terms of:

Technology parameters
Geometry parameters
Operating conditions

Binkley:
Tradeoffs and Optimization
in Analog CMOS Design

MOS EKV model
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Small-signal model
parameters can be expressed
in terms of:

Technology parameters
Geometry parameters
Operating conditions

Binkley:
Tradeoffs and Optimization
in Analog CMQOS Design
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MOS EKV model
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MOS EKV model

Small-signal model
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SLICAP MOS small-signal model
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Physical constants in SLICAPmodels.lib
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SLICAP MOS small-signal model
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SLICAP MOS small-signal model
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