Structured Electronic Design

Application of the MOS EKV model

Anton J.M. Montagne

- D \imath_n

- D \imath_n

- D u_n

- D u_n

MOS largest available power gain in forward saturation region:

MOS largest available power gain in forward saturation region: $V_{GS} > V_{th}$ $V_{DS} > V_{GS} - V_{th}$

MOS largest available power gain in forward saturation region: $V_{GS} > V_{th}$ $V_{DS} > V_{GS} - V_{th}$

MOS largest available power gain in forward saturation region: $V_{GS} > V_{th}$ $V_{DS} > V_{GS} - V_{th}$

Keep it simple!

MOS largest available power gain in forward saturation region: $V_{GS} > V_{th}$ $V_{DS} > V_{GS} - V_{th}$

Keep it simple!

Up to critical inversion the transconductance increases with the inversion coefficient

$$> V_{GS} - V_{th}$$

MOS largest available power gain in forward saturation region: $V_{GS} > V_{th}$ $V_{DS} > V_{GS} - V_{th}$

Keep it simple!

Up to critical inversion the transconductance increases with the inversion coefficient Cut-off frequency proportional with small-signal transconductance

$$> V_{GS} - V_{th}$$

MOS largest available power gain in forward saturation region: $V_{GS} > V_{th}$ $V_{DS} > V_{GS} - V_{th}$

Keep it simple!

Up to critical inversion the transconductance increases with the inversion coefficient Cut-off frequency proportional with small-signal transconductance Channel current noise spectral density proportional with transconductance

$$> V_{GS} - V_{th}$$

MOS largest available power gain in forward saturation region: $V_{GS} > V_{th}$ $V_{DS} > V_{GS} - V_{th}$

Keep it simple!

Up to critical inversion the transconductance increases with the inversion coefficient Cut-off frequency proportional with small-signal transconductance Channel current noise spectral density proportional with transconductance Corner frequency 1/f noise proportional with cut-off frequency

$$> V_{GS} - V_{th}$$

MOS largest available power gain in forward saturation region: $V_{GS} > V_{th}$ $V_{DS} > V_{GS} - V_{th}$

Keep it simple!

Up to critical inversion the transconductance increases with the inversion coefficient Cut-off frequency proportional with small-signal transconductance Channel current noise spectral density proportional with transconductance Corner frequency 1/f noise proportional with cut-off frequency

$$> V_{GS} - V_{th}$$

