Structured Electronic Design

Determination of OpAmp GB-product requirement

Anton J.M. Montagne

Procedure for finding required GB product OpAmp

- 1. Make a model of the OpAmp model relevant parameters for dynamic behavior symbolically
 - a. DC gain and single pole: $A_v = \frac{A_0}{1 + s \frac{A_0}{2\pi GB}}$
 - b. Differential-mode and common-mode input capacitances
 - c. Output resistance
- 2. Model the amplifier: use numeric values for parameters that have been designed
- 3. Derive an expression for the loop gain (mixed symbolic, numeric)
- 4. Determine the loop gain-poles product (and its order) from this expression
- 5. Solve GB from: $LP_n (2\pi B_f)^n = 0$ B_f = required bandwidth in [Hz]
- 6. Find show stopper value with input capacitances and output resistance set to zero
- 7. Example 11.2 (study this example during next instruction)

SLiCAP functions for determination of the bandwidth

```
instruction.setGainType('loopgain')
                                    # defines the gain type
instruction.setDtaType('laplace')
                                    # defines the data type
                                    # substitutes parameters before execution
instruction.setSimType('numeric')
                                    # defines the loop gain reference
instruction.setLGref('E1')
result = instruction.execute()
# Get the coefficients of the numerator and the denominator of the
# loop gain in ascending order
numerCoeffs, denomCoeffs = coeffsTransfer(result.laplace)
# Get the asymptotic values of the servo bandwidth
servoData = findServoBandwidth(loopGainRational);
# display help for a specific function
help(<functionName>)
```