Structured Electronic Design

Dominant and non-dominant poles in feedback systems

Anton J.M. Montagne

Magnitude plot with three separated negative real poles

Magnitude plot with three separated negative real poles

Magnitude plot with three separated negative real poles

Magnitude plot with three separated negative real poles

Magnitude plot with three separated negative real poles

(c) 2019 A.J.M. Montagne 14

$$|L(\omega)| |S(\omega)| \quad \omega_2 < \omega_3 < \omega_1 |A_{f\infty}(\omega)|$$

$$|L(\omega)| |S(\omega)| \qquad \omega_2 < \omega_3 < \omega_1 |A_{f\infty}(\omega)| |A_f(\omega)|$$

Magnitude plot with three separated negative real poles

$$|L(\omega)| |S(\omega)| \qquad \omega_2 < \omega_3 < \omega_1 |A_{f\infty}(\omega)| |A_f(\omega)|$$

Dominant poles: p_1 , p_2

Magnitude plot with three separated negative real poles

$$|L(\omega)| |S(\omega)| \qquad \omega_2 < \omega_3 < \omega_1 |A_{f\infty}(\omega)| |A_f(\omega)|$$

Dominant poles: p_1, p_2

Non-dominant pole: P₃

Magnitude plot with three separated negative real poles

$$|L(\omega)| |S(\omega)| \qquad \omega_2 < \omega_3 < \omega_1 |A_{f\infty}(\omega)| |A_f(\omega)|$$

Dominant poles: p_1 , p_2

Non-dominant pole: p_3

Pole non-dominant if magnitude of loop gain at pole frequency smaller than unity

Magnitude plot with three separated negative real poles

$$|L(\omega)| |S(\omega)| \qquad \omega_2 < \omega_3 < \omega_1 |A_{f\infty}(\omega)| |A_f(\omega)|$$

Dominant poles: p_1 , p_2

Non-dominant pole: p_3

Pole non-dominant if magnitude of loop gain at pole frequency smaller than unity

1. Rank the poles of the loop gain in ascending order:

1. Rank the poles of the loop gain in ascending order: $|p_1| < |p_2| < |p_3|$

1. Rank the poles of the loop gain in ascending order: $|p_1| < |p_2| < |p_3|$

2. Calculate the -3dB low-pass cut-off frequency for increasing order:

- 1. Rank the poles of the loop gain in ascending order: $|p_1| < |p_2| < |p_3|$
- 2. Calculate the -3dB low-pass cut-off frequency for increasing order:

 $\omega_1 = |(1 - L_{DC}) p_1|$

1. Rank the poles of the loop gain in ascending order: $|p_1| < |p_2| < |p_3|$

2. Calculate the -3dB low-pass cut-off frequency for increasing order:

$$\omega_1 = |(1 - L_{DC}) p_1|,$$

$$\omega_2 = \sqrt{|(1 - L_{DC}) p_1 p_2|}$$

- 1. Rank the poles of the loop gain in ascending order: $|p_1| < |p_2| < |p_3|$
- 2. Calculate the -3dB low-pass cut-off frequency for increasing order:

$$\omega_{1} = |(1 - L_{DC}) p_{1}|,$$

$$\omega_{2} = \sqrt{|(1 - L_{DC}) p_{1} p_{2}|},$$

$$\omega_{3} = \sqrt[3]{|(1 - L_{DC}) p_{1} p_{2} p_{3}|}$$

- 1. Rank the poles of the loop gain in ascending order: $|p_1| < |p_2| < |p_3|$
- 2. Calculate the -3dB low-pass cut-off frequency for increasing order:

$$\omega_{1} = |(1 - L_{DC}) p_{1}|,$$

$$\omega_{2} = \sqrt{|(1 - L_{DC}) p_{1} p_{2}|},$$

$$\omega_{3} = \sqrt[3]{|(1 - L_{DC}) p_{1} p_{2} p_{3}|}$$

3. Stop this procedure if cut-off frequency increases

- 1. Rank the poles of the loop gain in ascending order: $|p_1| < |p_2| < |p_3|$
- 2. Calculate the -3dB low-pass cut-off frequency for increasing order:

$$\omega_{1} = |(1 - L_{DC}) p_{1}|,$$

$$\omega_{2} = \sqrt{|(1 - L_{DC}) p_{1} p_{2}|},$$

$$\omega_{3} = \sqrt[3]{|(1 - L_{DC}) p_{1} p_{2} p_{3}|}$$

- 3. Stop this procedure if cut-off frequency increases
- 4. The order n is the number for which this cut-off frequency has the smallest value

- 1. Rank the poles of the loop gain in ascending order: $|p_1| < |p_2| < |p_3|$
- 2. Calculate the -3dB low-pass cut-off frequency for increasing order:

$$\omega_{1} = |(1 - L_{DC}) p_{1}|,$$

$$\omega_{2} = \sqrt{|(1 - L_{DC}) p_{1} p_{2}|},$$

$$\omega_{3} = \sqrt[3]{|(1 - L_{DC}) p_{1} p_{2} p_{3}|}$$

- 3. Stop this procedure if cut-off frequency increases
- 4. The order n is the number for which this cut-off frequency has the smallest value