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3. DC loop gain

Starting point: DC loop gain equals zero

1. Number of branches equals number
of poles of the loop gain

2. Symmetrical with respect to the real axis

3. Branches start at poles of the loop gain

4. Branches end at zeros of the loop gain or
   at infinity

5. Parts of the real axis left from odd number
   of poles + zeros belong to a branch

6. n poles and m zeros, then n - m asymptotes

7. Real axis intersection point asymptotes

8. Angle asymptotes equally spaced

9. Break away (and arrival) points

10. Break away angles equally spacedEnd point: DC loop gain equals infinity
Actual servo poles: DC loop gain
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Root locus technique

Zeros of the loop gain
Poles of the loop gain

DC value of the loop gain

Poles of servo function

Root locus: 
Paths traced out by the poles of the servo 
function while varying the DC loop gain 

Paths depend on:
1. Poles of the loop gain
2. Zeros of the loop gain
3. DC loop gain

Starting point: DC loop gain equals zero

1. Number of branches equals number
of poles of the loop gain

2. Symmetrical with respect to the real axis

3. Branches start at poles of the loop gain

4. Branches end at zeros of the loop gain or
   at infinity

5. Parts of the real axis left from odd number
   of poles + zeros belong to a branch

6. n poles and m zeros, then n - m asymptotes

7. Real axis intersection point asymptotes

8. Angle asymptotes equally spaced

9. Break away (and arrival) points

10. Break away angles equally spacedEnd point: DC loop gain equals infinity
Actual servo poles: DC loop gain
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Root locus first order
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Root locus first order
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Root locus first order
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Root locus first order
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Root locus first order
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Root locus first order with zero left
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Root locus first order with zero left
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Root locus first order with zero left
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Root locus first order with zero left
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Root locus first order with zero left
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Root locus first order with zero left
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Root locus first order with zero left

Note: pole only drops on the zero if DC loop gain is infinite!
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Root locus first order with zero left

Note: pole only drops on the zero if DC loop gain is infinite!
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Root locus first order with zero right
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Root locus first order with zero right
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Root locus first order with zero right
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Root locus first order with zero right
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Root locus first order with zero right
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Root locus first order with zero right
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Root locus first order with zero right

Note: pole only drops on the zero if DC loop gain is infinite!
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Root locus first order with zero right

Note: pole only drops on the zero if DC loop gain is infinite!
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Root locus SLiCAP
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Root locus SLiCAP
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Circuit for plotting root locus
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Root locus SLiCAP
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Circuit for plotting root locus

E1 = loop gain reference
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Root locus SLiCAP
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Circuit for plotting root locus

E1 = loop gain reference
Loop gain equals voltage gain of E1
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Root locus SLiCAP
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Circuit for plotting root locus

E1 = loop gain reference

Transfer of E1 has DC gain, poles and zeros
Loop gain equals voltage gain of E1
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Root locus SLiCAP

+

-

+

-

+

-

(1) (2)

V1 E1
+

-

Circuit for plotting root locus

E1 = loop gain reference

Transfer of E1 has DC gain, poles and zeros
Loop gain equals voltage gain of E1

Root locus plot:
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Root locus SLiCAP
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Circuit for plotting root locus

E1 = loop gain reference

Transfer of E1 has DC gain, poles and zeros
Loop gain equals voltage gain of E1

Root locus plot:
1. Poles of the loop gain
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Root locus SLiCAP
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Circuit for plotting root locus

E1 = loop gain reference

Transfer of E1 has DC gain, poles and zeros
Loop gain equals voltage gain of E1

Root locus plot:
1. Poles of the loop gain
2. Zeros of the loop gain
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Root locus SLiCAP
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Circuit for plotting root locus

E1 = loop gain reference

Transfer of E1 has DC gain, poles and zeros
Loop gain equals voltage gain of E1

Root locus plot:
1. Poles of the loop gain
2. Zeros of the loop gain
3. Poles of the servo function while 
   stepping the DC gain of E1
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Root locus SLiCAP
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Circuit for plotting root locus

E1 = loop gain reference

Transfer of E1 has DC gain, poles and zeros
Loop gain equals voltage gain of E1

Root locus plot:
1. Poles of the loop gain
2. Zeros of the loop gain
3. Poles of the servo function while 
   stepping the DC gain of E1

See section 11.5.3
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Root locus SLiCAP
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Circuit for plotting root locus

E1 = loop gain reference

Transfer of E1 has DC gain, poles and zeros
Loop gain equals voltage gain of E1

Root locus plot:
1. Poles of the loop gain
2. Zeros of the loop gain
3. Poles of the servo function while 
   stepping the DC gain of E1

See section 11.5.3
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Root locus SLiCAP second order
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Root locus SLiCAP second order
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Root locus SLiCAP third order
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Root locus SLiCAP third order

-150 -100 -50 0 50
Real [Hz]

-100

-50

0

50

100

Im
a
g

 [
H

z]

RL3
0

SERVO Poles:A
0
 =  0.0e+00

SERVO Poles:A
0
 = 2.5e+08

SERVO Poles:A
0
 = 0.0e+00 .. 2.5e+08

LOOPGAIN Poles

-300 -250 -200 -150 -100 -50 0
Real [Hz]

-150

-100

-50

0

50

100

150

Im
a
g

 [
H

z]

RL3
1

SERVO Poles:A
0
 = 0.0e+00

SERVO Poles:A
0
 =  2.5e+08

SERVO Poles:A
0
 =  0.0e+00 ..  2.5e+08

LOOPGAIN Poles
LOOPGAIN Zeros


