Structured Electronic Design

Introduction to feedback stages

Anton J.M. Montagne

Method to establish an accurate transfer

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage)

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest Transfer of feedback network equals the required value of the corresponding T1 parameter

	Source voltage	Source current	Load voltage
T1 parameters			
Feedback type			

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest Transfer of feedback network equals the required value of the corresponding T1 parameter

	Source voltage	Source current	Load voltage
T1 parameters	А, В		
Feedback type			

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest Transfer of feedback network equals the required value of the corresponding T1 parameter

	Source voltage	Source current	Load voltage
T1 parameters	А, В		
Feedback type	series comparison		

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest Transfer of feedback network equals the required value of the corresponding T1 parameter

	Source voltage	Source current	Load voltage
T1 parameters	А, В	C, D	
Feedback type	series comparison		

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest Transfer of feedback network equals the required value of the corresponding T1 parameter

	Source voltage	Source current	Load voltage
T1 parameters	А, В	C, D	
Feedback type	series comparison	parallel comparison	

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest Transfer of feedback network equals the required value of the corresponding T1 parameter

	Source voltage	Source current	Load voltage
T1 parameters	А, В	C, D	A, C
Feedback type	series comparison	parallel comparison	

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest Transfer of feedback network equals the required value of the corresponding T1 parameter

	Source	Source	Load
	voltage	current	voltage
T1 parameters	А, В	C, D	A, C
Feedback type	series	parallel	parallel
	comparison	comparison	sensing

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest Transfer of feedback network equals the required value of the corresponding T1 parameter

	Source	Source	Load
	voltage	current	voltage
T1 parameters	А, В	C, D	A, C
Feedback type	series	parallel	parallel
	comparison	comparison	sensing

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest Transfer of feedback network equals the required value of the corresponding T1 parameter

	Source	Source	Load
	voltage	current	voltage
T1 parameters	А, В	C, D	A, C
Feedback type	series	parallel	parallel
	comparison	comparison	sensing

Load current
B, D
series sensing

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest Transfer of feedback network equals the required value of the corresponding T1 parameter

	Source	Source	Load
	voltage	current	voltage
T1 parameters	А, В	C, D	A, C
Feedback type	series	parallel	parallel
	comparison	comparison	sensing

Controller (error amplifier) generates the load quantity and nullifies comparison result

Method to establish an accurate transfer

Generate a copy of the source signal from the load signal with a feedback network Input signal of the feedback network = load quantity of interest (current or voltage) Output signal of the feedback network = accurate copy of the source quantity of interest Transfer of feedback network equals the required value of the corresponding T1 parameter

	Source	Source	Load
	voltage	current	voltage
T1 parameters	A, B	C, D	A, C
Feedback type	series	parallel	parallel
	comparison	comparison	sensing

Controller (error amplifier) generates the load quantity and nullifies comparison result

Single-stage controllers

Single-stage controllers

Single-stage controllers

Single-stage controllers

Single-stage controllers

Single-stage controllers

Three-terminal controllers

Complementary parallel CS stage

Single-stage controllers

Three-terminal controllers

Four-terminal controllers

Single-stage controllers

Three-terminal controllers

Complementary parallel CS stage

Four-terminal controllers

Single-stage controllers

Three-terminal controllers

Complementary parallel CS stage

+

in

Four-terminal controllers

anti-series CS stages

Single-stage controllers

Three-terminal controllers

Complementary parallel CS stage

+

in

Four-terminal controllers

anti-series CS stages

Direct feedback:

Direct feedback:

Sensing of the load quantity of interest

Direct feedback:

Sensing of the load quantity of interest Comparison with the source quantity of interest

Direct feedback:

Sensing of the load quantity of interest Comparison with the source quantity of interest

Inirect feedback or model-based feedback:

Direct feedback:

Sensing of the load quantity of interest Comparison with the source quantity of interest Inirect feedback or model-based feedback: Indirect sensing: sensing of a copy of the load quantity

Direct feedback:

Sensing of the load quantity of interest Comparison with the source quantity of interest

Inirect feedback or model-based feedback: Indirect sensing: sensing of a copy of the load quantity Indirect comparison: comparison with a copy of the source quantity
Direct feedback:

Sensing of the load quantity of interest Comparison with the source quantity of interest

Inirect feedback or model-based feedback: Indirect sensing: sensing of a copy of the load quantity Indirect comparison: comparison with a copy of the source quantity

Nonenergic feedback:

Direct feedback:

Sensing of the load quantity of interest Comparison with the source quantity of interest

Inirect feedback or model-based feedback:

Indirect sensing: sensing of a copy of the load quantity Indirect comparison: comparison with a copy of the source quantity

Nonenergic feedback:

No power dissipation or energy storage in the feedback network(s)

Direct feedback:

Sensing of the load quantity of interest Comparison with the source quantity of interest

Inirect feedback or model-based feedback:

Indirect sensing: sensing of a copy of the load quantity Indirect comparison: comparison with a copy of the source quantity

Nonenergic feedback:

No power dissipation or energy storage in the feedback network(s) No deterioration of the noise performance, the drive capability, the energy storage and the power efficiency by the feedback network

Direct feedback:

Sensing of the load quantity of interest Comparison with the source quantity of interest

Inirect feedback or model-based feedback:

Indirect sensing: sensing of a copy of the load quantity Indirect comparison: comparison with a copy of the source quantity

Nonenergic feedback:

No power dissipation or energy storage in the feedback network(s) No deterioration of the noise performance, the drive capability, the energy storage and the power efficiency by the feedback network

Passive feedback:

Direct feedback:

Sensing of the load quantity of interest Comparison with the source quantity of interest

Inirect feedback or model-based feedback:

Indirect sensing: sensing of a copy of the load quantity Indirect comparison: comparison with a copy of the source quantity

Nonenergic feedback:

No power dissipation or energy storage in the feedback network(s) No deterioration of the noise performance, the drive capability, the energy storage and the power efficiency by the feedback network

Passive feedback:

Power dissipation and/or energy storage in the feedback network(s)

Direct feedback:

Sensing of the load quantity of interest Comparison with the source quantity of interest

Inirect feedback or model-based feedback:

Indirect sensing: sensing of a copy of the load quantity Indirect comparison: comparison with a copy of the source quantity

Nonenergic feedback:

No power dissipation or energy storage in the feedback network(s) No deterioration of the noise performance, the drive capability, the energy storage and the power efficiency by the feedback network

Passive feedback:

Power dissipation and/or energy storage in the feedback network(s) Deterioration of the noise performance, the drive capability, the energy storage and the power efficiency by the feedback network

Direct feedback:

Sensing of the load quantity of interest Comparison with the source quantity of interest

Inirect feedback or model-based feedback:

Indirect sensing: sensing of a copy of the load quantity Indirect comparison: comparison with a copy of the source quantity

Nonenergic feedback:

No power dissipation or energy storage in the feedback network(s) No deterioration of the noise performance, the drive capability, the energy storage and the power efficiency by the feedback network

Passive feedback:

Power dissipation and/or energy storage in the feedback network(s) Deterioration of the noise performance, the drive capability, the energy storage and the power efficiency by the feedback network

Can be kept acceptably low if feedback impedances in series with the signal path and feedback admittances in parallel with the signal path are relatively small

Direct feedback:

Sensing of the load quantity of interest Comparison with the source quantity of interest

Inirect feedback or model-based feedback:

Indirect sensing: sensing of a copy of the load quantity Indirect comparison: comparison with a copy of the source quantity

Nonenergic feedback:

No power dissipation or energy storage in the feedback network(s) No deterioration of the noise performance, the drive capability, the energy storage and the power efficiency by the feedback network

Passive feedback:

Power dissipation and/or energy storage in the feedback network(s) Deterioration of the noise performance, the drive capability, the energy storage and the power efficiency by the feedback network

Can be kept acceptably low if feedback impedances in series with the signal path and feedback admittances in parallel with the signal path are relatively small

Concept

Concept

Concept

Voltage amplifier

Concept

Voltage amplifier

Concept

Voltage amplifier

Concept

Voltage amplifier

Voltage follower

Concept

Implementation (without biasing)

Current follower

Implementation

Implementation

Implementation

Implementation

CD stage

CG stage

Implementation

CD stage

CG stage

Concept

Α

A Implementation (without biasing)

Concept

Concept B Implementation (without biasing)

Concept B

Concept B

Concept

C

Implementation (without biasing) Concept B

Concept

C

Implementation (without biasing)

Concept B

 Z_s

Concept

Implementation (without biasing)

Concept B

Concept

Implementation (without biasing)

Β Concept

Implementation (without biasing)

Concept

D

Implementation (without biasing)

 Z_1 Z_2 Z_{ℓ}

 Y_s

 I_s

Implementation (without biasing)

 Y_s

 I_s

