Structured Electronic Design

Frequency Compensation: the Phantom zero

Anton J.M. Montagne

$$S(s) = \frac{-L(s)}{1 - L(s)} = \frac{-L_{\text{DC}}N(s)}{D(s) - L_{\text{DC}}N(s)}$$

$$S(s) = \frac{-L(s)}{1-L(s)} = \frac{-L_{\rm DC}N(s)}{D(s)-L_{\rm DC}N(s)}$$
 Characteristic polynomial of the servo function
$$D(s) - L_{\rm DC}N(s) = 0$$

Design of the characteristic polynomial of the servo function

Design of the characteristic polynomial of the servo function

Loop gain with n poles:

1. Loop gain-poles product defines the coefficient of the highest order of s

Design of the characteristic polynomial of the servo function

- 1. Loop gain-poles product defines the coefficient of the highest order of s
- 2. n-1 zeros can be inserted in the loop to adjust the other coefficients to those of desired filter characteristic

Design of the characteristic polynomial of the servo function

- 1. Loop gain-poles product defines the coefficient of the highest order of s
- 2. n-1 zeros can be inserted in the loop to adjust the other coefficients to those of desired filter characteristic
- 3. Those zeros are also zeros in the servo function

Design of the characteristic polynomial of the servo function

- 1. Loop gain-poles product defines the coefficient of the highest order of s
- 2. n-1 zeros can be inserted in the loop to adjust the other coefficients to those of desired filter characteristic
- 3. Those zeros are also zeros in the servo function
- 4. An all-pole source-to-load transfer can still be established if these zeros appear as poles in the asymptotic gain

Design of the characteristic polynomial of the servo function

- 1. Loop gain-poles product defines the coefficient of the highest order of s
- 2. n-1 zeros can be inserted in the loop to adjust the other coefficients to those of desired filter characteristic
- 3. Those zeros are also zeros in the servo function
- 4. An all-pole source-to-load transfer can still be established if these zeros appear as poles in the asymptotic gain

$$A_f(s) = A_{f\infty}(s) \frac{-L(s)}{1 - L(s)}$$

Design of the characteristic polynomial of the servo function

Loop gain with n poles:

- 1. Loop gain-poles product defines the coefficient of the highest order of s
- 2. n-1 zeros can be inserted in the loop to adjust the other coefficients to those of desired filter characteristic
- 3. Those zeros are also zeros in the servo function
- 4. An all-pole source-to-load transfer can still be established if these zeros appear as poles in the asymptotic gain

Zero changes characteristic equation and thus the poles of the servo function

Design of the characteristic polynomial of the servo function

Loop gain with n poles:

- 1. Loop gain-poles product defines the coefficient of the highest order of s
- 2. n-1 zeros can be inserted in the loop to adjust the other coefficients to those of desired filter characteristic
- 3. Those zeros are also zeros in the servo function
- 4. An all-pole source-to-load transfer can still be established if these zeros appear as poles in the asymptotic gain

$$A_f(s) = \frac{A_{f\infty}(s)}{(1-s/z_1)} \frac{-L(s)(1-s/z_1)}{1-L(s)(1-s/z_1)} \ \ \, \text{Zero in loop gain appears in servo function}$$

Pole in asymptotic gain at the frequency of the zero and thus the poles of the servo function

Design of the characteristic polynomial of the servo function

Loop gain with n poles:

- 1. Loop gain-poles product defines the coefficient of the highest order of s
- 2. n-1 zeros can be inserted in the loop to adjust the other coefficients to those of desired filter characteristic
- 3. Those zeros are also zeros in the servo function
- 4. An all-pole source-to-load transfer can still be established if these zeros appear as poles in the asymptotic gain

$$A_f(s) = \frac{A_{f\infty}(s)}{(1-s/z_1)} \frac{-L(s)(1-s/z_1)}{1-L(s)(1-s/z_1)}$$
 Zero in loop gain appears in servo function

Pole in asymptotic gain at the frequency of the zero and thus the poles of the servo function

Design of the characteristic polynomial of the servo function

Loop gain with n poles:

- 1. Loop gain-poles product defines the coefficient of the highest order of s
- 2. n-1 zeros can be inserted in the loop to adjust the other coefficients to those of desired filter characteristic
- 3. Those zeros are also zeros in the servo function
- 4. An all-pole source-to-load transfer can still be established if these zeros appear as poles in the asymptotic gain

$$A_f(s) = A_{f\infty}(s) \frac{-L(s)}{1 - L(s)(1 - s/z_1)}$$

Phantom zero changes characteristic equation and thus the poles of the servo function

Design of the characteristic polynomial of the servo function

Loop gain with n poles:

- 1. Loop gain-poles product defines the coefficient of the highest order of s
- 2. n-1 zeros can be inserted in the loop to adjust the other coefficients to those of desired filter characteristic
- 3. Those zeros are also zeros in the servo function
- 4. An all-pole source-to-load transfer can still be established if these zeros appear as poles in the asymptotic gain

$$A_f(s) = A_{f\infty}(s) \frac{-L(s)}{1 - L(s)(1 - s/z_1)}$$

Phantom zero changes characteristic equation and thus the poles of the servo function