Structured Electronic Design

There are specifications

- There is **no** circuit, so:
- No simulations to "optimize"
- No "tweaking" of existing hardware

The design example used in this course (and for the bonus assignments)

Our Customer: Low Frequency Radio Astronomers

OLFAR and LUFAR: 30kHz – 30MHz

13.7 billion years

Sky at 4.7MHz

RAE-2 all-sky map of the galaxy at 4.70 MHz by J. C. Novaco & L. W. Brown (1978) [2]

A resonant antenna

OLFAR and LUFAR: 30kHz – 30MHz

OLFAR and LUFAR: $\lambda \approx 10 \text{km} - \lambda \approx 10 \text{m}$ (RAE1, 4.7MHz: $\lambda \approx 64 \text{m}$)

A short antenna

The length of the resonant antenna is $\frac{1}{2}\lambda$ (λ = wavelength)

OLFAR and LUFAR: 30kHz – 30MHz

OLFAR and LUFAR: $\lambda \approx 10 \text{km} - \lambda \approx 10 \text{m}$ (RAE1, 4.7MHz: $\lambda \approx 64 \text{m}$)

From antenna to radio

The design example challenge in this course

The design example challenge in this course

Demonstration. 50 Ω Coax cable, 6m length

Measurements with Network Analyzer

Lowest Resonant Frequency

16.4

MHz

Measurements with oscilloscope

Lowest Resonant Frequency

6.2

Power splitter Input impedance: 50Ω 2 equal outputs: Output impedances: 50Ω

MHz

c (speed of light in vacuum)	299792458	m/s	c (speed of light in vacuum)	299792458	m/s	c (speed of light in vacuum)	299792458	m/s
cable reduction of c	0.67		cable reduction of c	0.67		cable reduction of c	0.67	
c in cable	199861639	m/s	c in cable	199861639	m/s	c in cable	199861639	m/s
cable length	6.1	m	cable length	10.1	m	cable length	16.2	m
delay cable [ns]	31	ns	delay cable [ns]	51	ns	delay cable [ns]	81	ns
return delay [ns]	61	ns	return delay [ns]	101	ns	return delay [ns]	162	ns
Lowest Resonant frequency at open cable = 0.25 Wavelength			Lowest Resonant frequency at open cable = 0.25 Wavelength			Lowest Resonant frequency at open cable = 0.25 Wavelength		
	8.2	MHz		4.9	MHz		3.1	MHz
Lowest Resonant frequency at shorted cable = 0.5 Wavelenath			Lowest Resonant frequency at shorted cable = 0.5 Wavelenath			Lowest Resonant frequency at shorted cable = 0.5 Wavelenath		

9.9

MHz

There is a separate file containing much more details about this demo

Lowest Resonant Frequency