Structured Electronic Design

EE3C11
Topics from Network Theory
Modified Nodal Analysis

Anton J.M. Montagne

Voltage-controlled notation

Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

Voltage source (example)

Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

Voltage source (example)

Current cannot be written as a function of the voltage

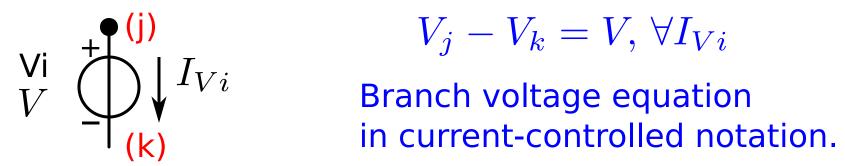
Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

Voltage source (example)

Current cannot be written as a function of the voltage

Voltage can be written as a function of the current:


Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

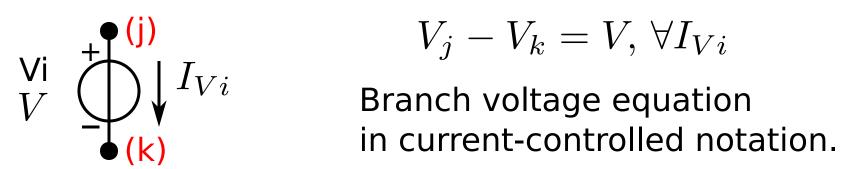
Voltage source (example)

Current cannot be written as a function of the voltage

Voltage can be written as a function of the current:

$$V_j - V_k = V, \, \forall I_{Vi}$$

Voltage-controlled notation

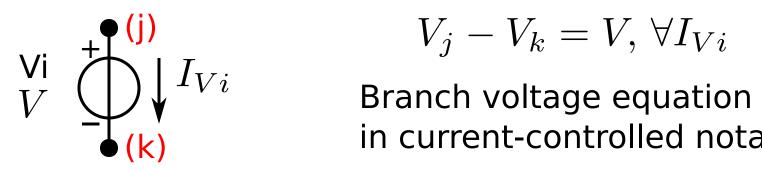

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

Voltage source (example)

Procedure

Current cannot be written as a function of the voltage

Voltage can be written as a function of the current:


$$V_j - V_k = V, \forall I_{Vi}$$

Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

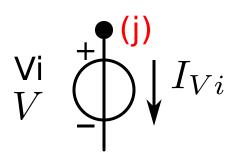
Voltage source (example)

Current cannot be written as a function of the voltage Voltage can be written as a function of the current:

$$V_j - V_k = V, \forall I_{Vi}$$

in current-controlled notation.

Procedure


Add the branch relation in current-controlled notation to the set of matrix equations:

Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

Voltage source (example)

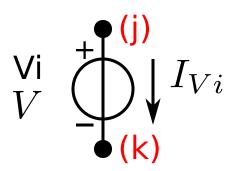
Current cannot be written as a function of the voltage Voltage can be written as a function of the current:

$$V_j - V_k = V, \forall I_{Vi}$$

 $V_j - V_k = V, \, orall I_{Vi}$ Branch voltage equation in current-controlled notation.

Procedure

Add the branch relation in current-controlled notation to the set of matrix equations:


Unknown current is added to vector with nodal voltages. It flows from node j to node k

Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

Voltage source (example)

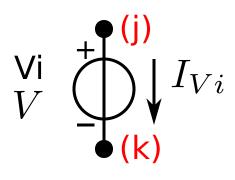
Current cannot be written as a function of the voltage Voltage can be written as a function of the current:

$$V_j - V_k = V, \forall I_{Vi}$$

 $V_j - V_k = V, \, orall I_{Vi}$ Branch voltage equation in current-controlled notation.

Procedure

Add the branch relation in current-controlled notation to the set of matrix equations:

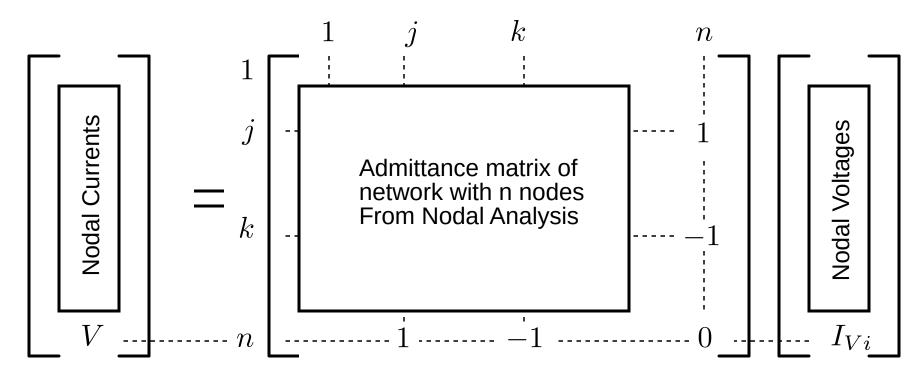

Unknown current is added to vector with nodal voltages. It flows from node j to node k

Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

Voltage source (example)

Current cannot be written as a function of the voltage Voltage can be written as a function of the current:

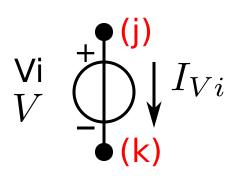

$$V_j - V_k = V, \forall I_{Vi}$$

Branch voltage equation in current-controlled notation.

Procedure

Add the branch relation in current-controlled notation to the set of matrix equations:

Unknown current is added to vector with nodal voltages. It flows from node j to node k

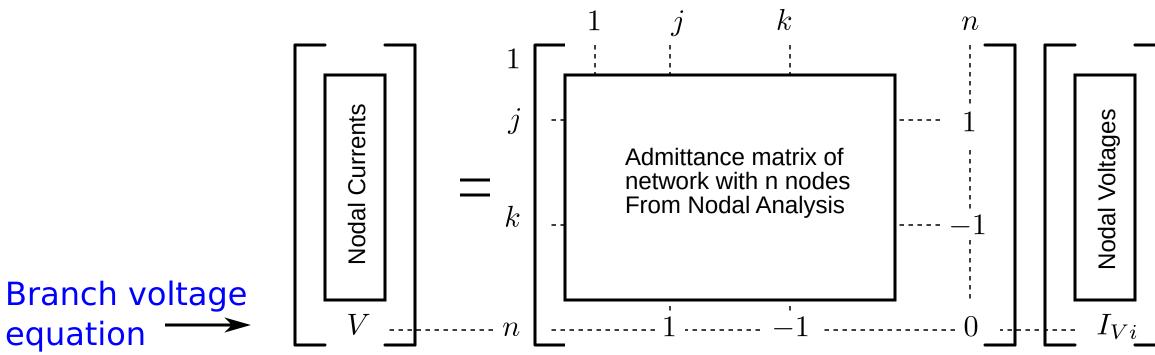


Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

Voltage source (example)

Current cannot be written as a function of the voltage Voltage can be written as a function of the current:

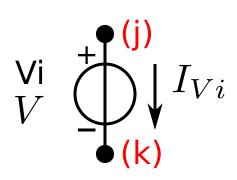

$$V_j - V_k = V, \forall I_{Vi}$$

Branch voltage equation in current-controlled notation.

Procedure

Add the branch relation in current-controlled notation to the set of matrix equations:

Unknown current is added to vector with nodal voltages. It flows from node j to node k

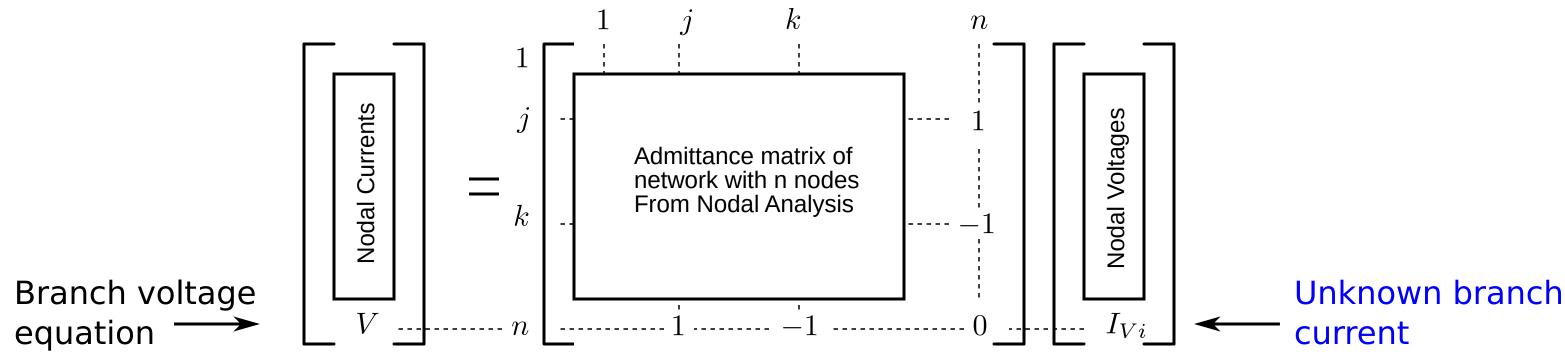


Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

Voltage source (example)

Current cannot be written as a function of the voltage Voltage can be written as a function of the current:

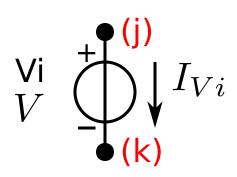

$$V_j - V_k = V, \forall I_{Vi}$$

Branch voltage equation in current-controlled notation.

Procedure

Add the branch relation in current-controlled notation to the set of matrix equations:

Unknown current is added to vector with nodal voltages. It flows from node j to node k

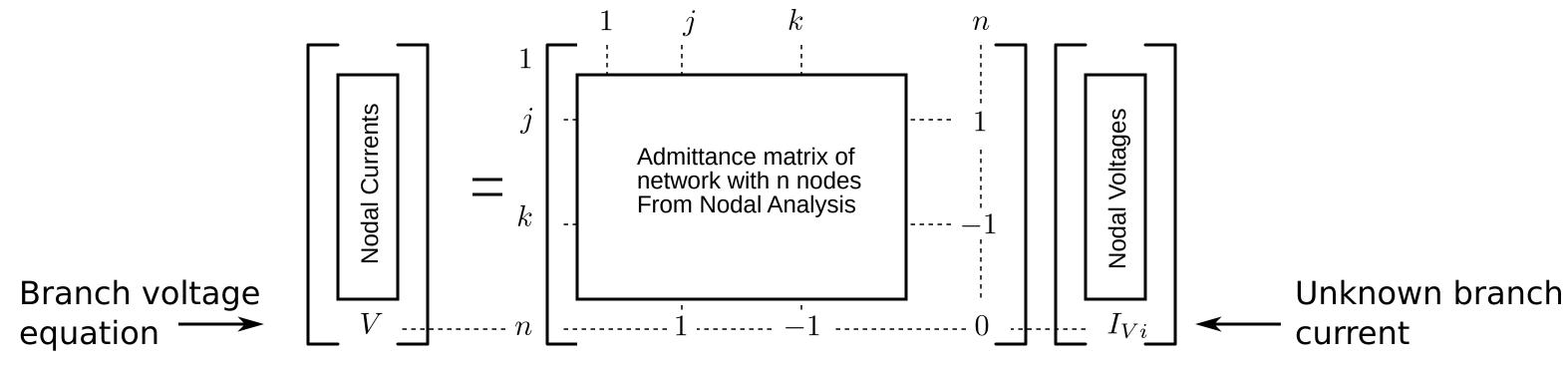


Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

Voltage source (example)

Current cannot be written as a function of the voltage Voltage can be written as a function of the current:


$$V_j - V_k = V, \forall I_{Vi}$$

Branch voltage equation in current-controlled notation.

Procedure

Add the branch relation in current-controlled notation to the set of matrix equations:

Unknown current is added to vector with nodal voltages. It flows from node j to node k

Transfer from independent variable k to dependent variable j

Transfer from independent variable k to dependent variable j

$$\frac{\mathbf{V}_j}{\mathbf{I}_k} = \mathbf{M}_{j,k}^{-1} = \frac{(-1)^{j+k} \det(\mathcal{M}_{k,j})}{\det(\mathbf{M})}$$

Transfer from independent variable k to dependent variable j

$$\frac{\mathbf{V}_j}{\mathbf{I}_k} = \mathbf{M}_{j,k}^{-1} = \frac{(-1)^{j+k} \det(\mathcal{M}_{k,j})}{\det(\mathbf{M})}$$

Minor matrix: $\mathcal{M}_{k,j}$ equals M after leaving out row k and column j.

Transfer from independent variable k to dependent variable j

$$\frac{\mathbf{V}_j}{\mathbf{I}_k} = \mathbf{M}_{j,k}^{-1} = \frac{(-1)^{j+k} \det(\mathcal{M}_{k,j})}{\det(\mathbf{M})}$$

Minor matrix: $\mathcal{M}_{k,j}$ equals M after leaving out row k and column j.

Poles:
$$det(\mathbf{M}) = 0$$

Transfer from independent variable k to dependent variable j

$$\frac{\mathbf{V}_j}{\mathbf{I}_k} = \mathbf{M}_{j,k}^{-1} = \frac{(-1)^{j+k} \det(\mathcal{M}_{k,j})}{\det(\mathbf{M})}$$

Minor matrix: $\mathcal{M}_{k,j}$ equals M after leaving out row k and column j.

Poles: $det(\mathbf{M}) = 0$

Zeros: $\det(\mathcal{M}_{k,i}) = 0$

Transfer from independent variable k to dependent variable j

$$\frac{\mathbf{V}_j}{\mathbf{I}_k} = \mathbf{M}_{j,k}^{-1} = \frac{(-1)^{j+k} \det(\mathcal{M}_{k,j})}{\det(\mathbf{M})}$$

Minor matrix: $\mathcal{M}_{k,j}$ equals M after leaving out row k and column j.

Poles: $det(\mathbf{M}) = 0$

Zeros: $\det(\mathcal{M}_{k,j}) = 0$