Structured Electronic Design Topics from network theory

Symbolic Analysis

SLICAP Symbolic Linear Circuit Analysis Program

Purpose: find design equations

Stationary linear instantaneous behavior including small random variations

Stationary linear dynamic behavior

Stationary noise behavior

Additional verification techniques

Pole-zero analysis Routh Hurwitz stability analysis Root locus analysis

Network Analysis

Numeric Analysis

SPICE Simulation Program with Integrated Circuit Emphasis

Purpose: design verification

AC, NOISE and TRAN always preceded by OP

analysis depend on SPICE version

LTSpice in this course

- **OP:** initial operating point analysis
- DC: stationary nonlinear instantaneous behavior
- AC: stationary linear (small-signal) dynamic behavior
- **NOISE:** stationary linear (small-signal) noise behavior
- **TRAN:** time-variant nonlinear dynamic behavior

- Parameter stepping, Monte Carlo and sensitivity

Nodal Analysis

Admittance

matrix

An electrical network consists of interconnected network elements Node: interconnection point Branch: element between two nodes

Kirchhoff's current law

Network with n nodes

The sum of the branch currents that flow into a node, equals zero: 1 node selected as reference node n-1 nodal voltages w.r.t. voltage of ref. node n-1 independent nodal equations

Only voltage-controlled elements: Branch current can be written as a function of the branch voltage

Vector with sum of independent currents flowing into a node

Vector with nodal voltages

Admittance Matrix

General form of nodal equation:

Sum of independent currents flowing into node k $\sum i_k = -\sum \mathbf{Y}_{k,1}v_1 - \sum \mathbf{Y}_{k,2}v_2 \quad \dots + \sum \mathbf{Y}_{k,k}v_k \quad \dots - \sum \mathbf{Y}_{k,n-1}v_{n-1}$ Off-diagonal element: $\sum \mathbf{Y}_{k,j} = \operatorname{Sum}$ of admittances connected between node k and node j

Diagonal element: sum of admittances connected to node k

Modified Nodal Analysis

Voltage-controlled notation

Nodal Analysis only suited for networks with elements of which the(ir) branch current(s) can be expressed in terms of branch voltage(s)

Voltage source (example)

Current cannot be written as a function of the voltage Voltage can be written as a functon of the current:

$$\begin{array}{c} \mathsf{Vi} \\ V \\ V \end{array} \stackrel{\bullet}{\longrightarrow} \begin{array}{c} \mathsf{(j)} \\ \mathsf{(k)} \end{array} I_{Vi} \end{array}$$

$$V_j - V_k = V, \,\forall I_{Vi}$$

Branch voltage equation in current-controlled notation.

Procedure

nodal currents

- Add the branch relation in current-controlled notation to the set of matrix equations:
 - Unknown current is added to vector with nodal voltages. It flows from node j to node k
 - Known voltage is added to vector with

Transfer function

Transfer from independent variable k to dependent variable j

$$\frac{\mathbf{V}_j}{\mathbf{I}_k} = \mathbf{M}_{j,k}^{-1} = \frac{(-1)^{j+k} \det(\mathcal{M}_k)}{\det(\mathbf{M}_k)}$$

Minor matrix: $\mathcal{M}_{k,j}$ equals M after leaving out row k and column j. Poles: $det(\mathbf{M}) = 0$ Zeros: $det(\mathcal{M}_{k,j}) = 0$

$_{k,j})$

Time-constant matrix

Basis for intuitive determination of poles in networks without feedback

If τ_i is an eigenvalue of **T** then $p_i = -\frac{1}{\tau_i}$ is a pole of the network.

$\mathbf{M} = \mathbf{G} + s\mathbf{C}$ $\det\left(\mathbf{G} + s\mathbf{C}\right) = 0$ $\det\left(\mathbf{I} + \lambda \mathbf{T}\right) = 0$ $\mathbf{T} = \mathbf{G}^{-1} \cdot \mathbf{C} = \mathbf{R} \cdot \mathbf{C}$

Resistance matrix

Resistance matrix relates dependent port variables to independent port variables

RC matrix example

R-port

 \mathbf{O} +

50

9M

 $1\mathrm{M}$

R-matrix

Poles from eigenvalues of RC:

 $p_1 = -1768 \mathrm{Hz}$

Oscilloscope probe circuit

$$\begin{array}{c|c} \mathsf{R3} \\ 1\mathrm{M} \end{array} \begin{array}{c} \mathsf{L} \\ \mathsf{T} \end{array} \begin{array}{c} \mathsf{C2} \\ \mathsf{90p} \\ \mathsf{T} \end{array} \begin{array}{c} \mathsf{-} \\ \mathsf{-} \end{array}$$

C-matrix

$$\left(\begin{array}{cc} 10^{-11} & 0\\ 0 & 90 \cdot 10^{-12} \end{array}\right)$$

 $p_2 = -0.3537 \text{GHz}$