Structured Electronic Design

EE3C11
Topics from Network Theory
Nodal Analysis

Anton J.M. Montagne

Nodal Analysis

Nodal Analysis

An electrical network consists of interconnected network elements Node: interconnection point
Branch: element between two nodes

Nodal Analysis

An electrical network consists of interconnected network elements Node: interconnection point
Branch: element between two nodes

Kirchhoff's current law
The sum of the branch currents that flow into (or from) a node, equals zero:

Nodal Analysis

An electrical network consists of interconnected network elements Node: interconnection point
Branch: element between two nodes
Kirchhoff's current law

The sum of the branch currents that flow into (or from) a node, equals zero:
$\sum_{i=1}^{i=n} I_{i}=0$

Nodal Analysis

An electrical network consists of interconnected network elements Node: interconnection point
Branch: element between two nodes

Kirchhoff's current law
The sum of the branch currents that flow into (or from) a node, equals zero:
$\sum_{i=1}^{i=n} I_{i}=0$

Network with n nodes
1 node selected as reference node $\mathrm{n}-1$ nodal voltages w.r.t. voltage of ref. node $\mathrm{n}-1$ independent nodal equations

Nodal Analysis

An electrical network consists of interconnected network elements Node: interconnection point
Branch: element between two nodes

Kirchhoff's current law
The sum of the branch currents that flow into (or from) a node, equals zero:
$\sum_{i=1}^{i=n} I_{i}=0$

Network with n nodes
1 node selected as reference node $\mathrm{n}-1$ nodal voltages w.r.t. voltage of ref. node $\mathrm{n}-1$ independent nodal equations

Only voltage-controlled elements: Branch current can be written as a function of the branch voltage

Nodal Analysis

An electrical network consists of interconnected network elements Node: interconnection point
Branch: element between two nodes

Kirchhoff's current law
The sum of the branch currents that flow into (or from) a node, equals zero:
$\sum_{i=1}^{i=n} I_{i}=0$

Network with n nodes
1 node selected as reference node $\mathrm{n}-1$ nodal voltages w.r.t. voltage of ref. node $\mathrm{n}-1$ independent nodal equations

Only voltage-controlled elements: Branch current can be written as a function of the branch voltage

$$
\mathbf{I}=\mathbf{Y} \cdot \mathbf{V}
$$

Nodal Analysis

An electrical network consists of interconnected network elements Node: interconnection point
Branch: element between two nodes

Kirchhoff's current law
The sum of the branch currents that flow into (or from) a node, equals zero:
$\sum_{i=1}^{i=n} I_{i}=0$

Network with n nodes
1 node selected as reference node $\mathrm{n}-1$ nodal voltages w.r.t. voltage of ref. node $\mathrm{n}-1$ independent nodal equations

Only voltage-controlled elements: Branch current can be written as a function of the branch voltage

Nodal Analysis

An electrical network consists of interconnected network elements Node: interconnection point
Branch: element between two nodes

Kirchhoff's current law
The sum of the branch currents that flow into (or from) a node, equals zero:
$\sum_{i=1}^{i=n} I_{i}=0$

Network with n nodes
1 node selected as reference node $\mathrm{n}-1$ nodal voltages w.r.t. voltage of ref. node $\mathrm{n}-1$ independent nodal equations

Only voltage-controlled elements: Branch current can be written as a function of the branch voltage

currents flowing
into a node

Nodal Analysis

An electrical network consists of interconnected network elements Node: interconnection point
Branch: element between two nodes

Kirchhoff's current law
The sum of the branch currents that flow into (or from) a node, equals zero:
$\sum_{i=1}^{i=n} I_{i}=0$

Network with n nodes
1 node selected as reference node $\mathrm{n}-1$ nodal voltages w.r.t. voltage of ref. node $\mathrm{n}-1$ independent nodal equations

Only voltage-controlled elements: Branch current can be written as a function of the branch voltage

Vector with sum of independent currents flowing into a node

Nodal Analysis

An electrical network consists of interconnected network elements Node: interconnection point
Branch: element between two nodes

Kirchhoff's current law
The sum of the branch currents that flow into (or from) a node, equals zero:
$\sum_{i=1}^{i=n} I_{i}=0$

Network with n nodes
1 node selected as reference node $\mathrm{n}-1$ nodal voltages w.r.t. voltage of ref. node $\mathrm{n}-1$ independent nodal equations

Only voltage-controlled elements: Branch current can be written as a function of the branch voltage

Vector with sum of independent currents flowing into a node

Admittance Matrix

Admittance Matrix

General form of nodal equation:

Admittance Matrix

General form of nodal equation:

$$
\sum i_{k}=-\sum \mathbf{Y}_{k, 1} v_{1}-\sum \mathbf{Y}_{k, 2} v_{2} \quad \ldots+\sum \mathbf{Y}_{k, k} v_{k} \quad \ldots-\sum \mathbf{Y}_{k, n-1} v_{n-1}
$$

Admittance Matrix

General form of nodal equation:
Sum of independent currents flowing into node k
\square
$\sum i_{k}=-\sum \mathbf{Y}_{k, 1} v_{1}-\sum \mathbf{Y}_{k, 2} v_{2} \quad \ldots+\sum \mathbf{Y}_{k, k} v_{k} \quad \ldots-\sum \mathbf{Y}_{k, n-1} v_{n-1}$

Admittance Matrix

General form of nodal equation:

Sum of independent currents flowing into node k

Admittance Matrix

General form of nodal equation:

Sum of independent currents flowing into node k
$\sum i_{k}=-\sum \mathbf{Y}_{k, 1} v_{1}-\sum \mathbf{Y}_{k, 2} v_{2} \quad \ldots+\sum \mathbf{Y}_{k, k} v_{k} \quad \ldots-\sum \mathbf{Y}_{k, n-1} v_{n-1}$

Admittance Matrix

General form of nodal equation:

Sum of independent currents flowing into node k

Off-diagonal element: $\quad \sum \mathbf{Y}_{k, j}=$ Sum of admittances connected between node k and node j

Admittance Matrix

General form of nodal equation:

Sum of independent currents flowing into node k

Off-diagonal element: $\quad \sum \mathbf{Y}_{k, j}=$ Sum of admittances connected between node k and node j

Nodal Analysis

Nodal Analysis

Nodal Analysis

Node (0) is reference node

Nodal Analysis

Node (0) is reference node
Two independent nodal equations:

Nodal Analysis

Node (0) is reference node
Two independent nodal equations:
(1) $0=I_{s}+V_{1} s C_{a}+V_{1} \frac{1}{R_{a}}+\left(V_{1}-V_{2}\right) s C_{b}$

Nodal Analysis

Node (0) is reference node
Two independent nodal equations:
(1) $0=I_{s}+V_{1} s C_{a}+V_{1} \frac{1}{R_{a}}+\left(V_{1}-V_{2}\right) s C_{b}$
(2) $0=V_{2} \frac{1}{R_{b}}+\left(V_{2}-V_{1}\right) s C_{b}$

Nodal Analysis

Node (0) is reference node
Two independent nodal equations:
(1) $0=I_{s}+V_{1} s C_{a}+V_{1} \frac{1}{R_{a}}+\left(V_{1}-V_{2}\right) s C_{b}$
(2) $0=V_{2} \frac{1}{R_{b}}+\left(V_{2}-V_{1}\right) s C_{b}$

In matrix form:

Nodal Analysis

Node (0) is reference node
Two independent nodal equations:
(1) $0=I_{s}+V_{1} s C_{a}+V_{1} \frac{1}{R_{a}}+\left(V_{1}-V_{2}\right) s C_{b}$
(2) $0=V_{2} \frac{1}{R_{b}}+\left(V_{2}-V_{1}\right) s C_{b}$

In matrix form:

$$
\binom{-I_{s}}{0}=\left(\begin{array}{cc}
s\left(C_{a}+C_{b}\right)+\frac{1}{R_{a}} & -s C_{b} \\
-s C_{b} & s C_{b}+\frac{1}{R_{b}}
\end{array}\right)\binom{V_{1}}{V_{2}}
$$

Nodal Analysis

Node (0) is reference node
Two independent nodal equations:
(1) $0=I_{s}+V_{1} s C_{a}+V_{1} \frac{1}{R_{a}}+\left(V_{1}-V_{2}\right) s C_{b}$
(2) $0=V_{2} \frac{1}{R_{b}}+\left(V_{2}-V_{1}\right) s C_{b}$

In matrix form:

$$
\binom{-I_{s}}{0}=\left(\begin{array}{cc}
s\left(C_{a}+C_{b}\right)+\frac{1}{R_{a}} & -s C_{b} \\
-s C_{b} & s C_{b}+\frac{1}{R_{b}}
\end{array}\right)\binom{V_{1}}{V_{2}}
$$

