# **Structured Electronic Design**

**EE3C11** Noise in Electronic Circuits Anton J.M. Montagne

# Noise mechanisms

## **Thermal noise**

Noise in conductors caused by thermal (Brownian) motion (Brown 1828). Experimetally detected by Johnson (1928) and explained by Nyquist (1928).

$$G = \frac{1}{R} \quad \boxed{\begin{array}{c} \text{noise-free} \\ \text{conductor} \end{array}} \quad \overbrace{} \stackrel{\bigstar}{\underset{I_n}{\longrightarrow}} I_n \\ S_{I_n} = 4kTG \left[A^2/\text{Hz}\right] \quad S_{V_n} = 4kT$$

## Shot noise

Noise current associated with a DC current through a junction.

$$\bigwedge_{I_J} \blacksquare \blacksquare \bigoplus_{I_n} \blacksquare I_n = 2$$

## **Excess noise**

Noise current resulting from fluctuations in conduction mechanism.

In junctions 
$$S_{I_n} = K rac{I_J^{lpha}}{f}$$
 In resistors  $S_{V_n} = K rac{V_R^2}{f}$ 



 $2qI_J$ 

## Drawing conventions



Equivalent circuit in which the voltage of V3 represents the total noise voltage



## Noise parameters

### Equivalent noise bandwidth of a system

Bandwidth of a brickwall filter with pass-band gain equal to the maximum magnitude of the system transfer that would produce  $B_n = \frac{1}{2\pi} \int_0^\infty \left| \frac{H(j\omega)}{H_{\text{max}}} \right|^2 d\omega [\text{Hz}]$ the same output noise power as the system:

### Noise temperature

Apparent temperature of a noise source with available noise power P over bandwidth B:  $T_n = \frac{P}{kB}$ 

### Signal-to-noise ratio

dB ratio of (weighted) signal power and (weighted) noise power:

### Noise figure

dB measure for deterioration of the signal-to-noise ratio by a system:  $F = SNR_{input} - SNR_{output}$ 

### Dynamic range

dB ratio of maximum signal power and the noise power in the absence of a signal:  $D = 10 \log_{10} \left( \frac{P_{s,max}}{P_{n,min}} \right)$ 

$$\left. \frac{H(j\omega)}{H_{\max}} \right|^2 d\omega [\text{Hz}]$$

$$SNR = 10 \log_{10} \left( \frac{P_{signal}}{P_{noise}} \right)$$

## Noisy two-ports













## Noise representation

- A noise-free two-port with two noise sources
- Six representations:
  4 port variables:
  \* two independent variables
  - \* two dependent variables

Can be translated into each other

- Example 2.9
- Example 19.2

## Amplifier noise design

Equivalent-input noise description is convenient at early stages of the design.

Budgets for equivalent input noise sources can be determined without knowledge of amplifier circuit.





 $S_{V_{n,tot}} = S_{V_{ns}} + S_{V_n} + S_{I_n} |Z_s|^2$ 

## Noise figure equivalent-input notation:

$$F = \frac{\int_0^\infty S_{V_{n,tot}} |W(f)|^2 df}{\int_0^\infty S_{V_{ns}} |W(f)|^2 df}$$

 $|W(f)|^2$ 

Squared magnitude of weighting function that models the sensitivity of the observer as a function of frequency

# Source transformation techniques



Blakesley voltage shift



Equivalent two-port representations





### Current split / redirect





# Impedances in the signal path



## Design conclusions

Insertion of impedances in series or in parallel with the signal path should be avoided

Gererally, they increase the influence of existing noise sources

If these impedances have a nonzero real part they contribute noise themselves

Only in narrow-band applications they may improve the noise performance:



Strong reduction of contribution of  $I_n$ to the total source-referred noise if  $\omega L_s \approx \frac{1}{\omega C_c}$