Structured Electronic Design

EE4109
Poll: Principle of Amplification and Biasing

Anton J.M. Montagne
The figure above shows a biased transistor stage with a signal source \((V_s\) and \(R_s\)) and a load resistor with a resistance \(R_l\).

The values \(I_{GS}\) and \(V_{GS}\) of the input bias sources have been assigned such that the zero-signal drain-source current equals \(I_{DS}\) equals 100\(\mu\)A and the zero-signal drain-source voltage \(V_{DS}\) equals 0.9V.
The figure above shows a biased transistor stage with a signal source (V_s and R_s) and a load resistor with a resistance R_ℓ.

The values I_{GS} and V_{GS} of the input bias sources have been assigned such that the zero-signal drain-source current equals I_{DS} equals $100\mu A$ and the zero-signal drain-source voltage V_{DS} equals $0.9V$.
The figure above shows a biased transistor stage with a signal source \(V_s\) and \(R_s\) and a load resistor with a resistance \(R_\ell\).

The values \(I_{GS}\) and \(V_{GS}\) of the input bias sources have been assigned such that the zero-signal drain-source current equals \(I_{DS}\) equals 100\(\mu\)A and the zero-signal drain-source voltage \(V_{DS}\) equals 0.9V.
The figure above shows a biased transistor stage with a signal source (V_s and R_s) and a load resistor with a resistance R_ℓ.

The values I_{GS} and V_{GS} of the input bias sources have been assigned such that the zero-signal drain-source current equals I_{DS} equals 100μA and the zero-signal drain-source voltage V_{DS} equals 0.9V.
The figure above shows a biased transistor stage with a signal source \((V_s\text{ and } R_s)\) and a load resistor with a resistance \(R_L\).

The values \(I_{GS}\) and \(V_{GS}\) of the input bias sources have been assigned such that the zero-signal drain-source current equals \(I_{DS}\) equals 100\(\mu\)A and the zero-signal drain-source voltage \(V_{DS}\) equals 0.9V.