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wavelength of the highest frequency of interest

Process cut-off frequency is much larger than the
highest frequency of interest

Determine valid combinations of T1 parameters A, B, C, D

SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D
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Design of the active antenna:

Negative feedback amplifiers
generally outperform
non-feedback amplifiers

Negative feedback can be applied if:

Circuit dimensions are much smaller than the 
wavelength of the highest frequency of interest

Process cut-off frequency is much larger than the
highest frequency of interest

Determine valid combinations of T1 parameters A, B, C, D
Design feedback configurations for these combinations
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Setting up specifications
Design of amplifier type: A, B, C, D
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Design of the active antenna:

Negative feedback amplifiers
generally outperform
non-feedback amplifiers

Negative feedback can be applied if:

Circuit dimensions are much smaller than the 
wavelength of the highest frequency of interest

Process cut-off frequency is much larger than the
highest frequency of interest

Determine valid combinations of T1 parameters A, B, C, D

Discuss their feasibility (comparison table or decision matrix)
Design feedback configurations for these combinations

SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D
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Design of the active antenna:

Negative feedback amplifiers
generally outperform
non-feedback amplifiers

Negative feedback can be applied if:

Circuit dimensions are much smaller than the 
wavelength of the highest frequency of interest

Process cut-off frequency is much larger than the
highest frequency of interest

Determine valid combinations of T1 parameters A, B, C, D

Discuss their feasibility (comparison table or decision matrix)
Design feedback configurations for these combinations

Design studies
level fo detailing
depends on experience

SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D
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Design of the active antenna:

Negative feedback amplifiers
generally outperform
non-feedback amplifiers

Negative feedback can be applied if:

Circuit dimensions are much smaller than the 
wavelength of the highest frequency of interest

Process cut-off frequency is much larger than the
highest frequency of interest

Determine valid combinations of T1 parameters A, B, C, D

Discuss their feasibility (comparison table or decision matrix)
Select the most promising solution

Design feedback configurations for these combinations

Design studies
level fo detailing
depends on experience

SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D
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Design of the active antenna:

Negative feedback amplifiers
generally outperform
non-feedback amplifiers

Negative feedback can be applied if:

Circuit dimensions are much smaller than the 
wavelength of the highest frequency of interest

Process cut-off frequency is much larger than the
highest frequency of interest

Determine valid combinations of T1 parameters A, B, C, D

Discuss their feasibility (comparison table or decision matrix)
Select the most promising solution

Design feedback configurations for these combinations

Design studies
level fo detailing
depends on experience

Result is a functional design
or concept design which is
assumed feasible

SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D
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Design of the active antenna:

Negative feedback amplifiers
generally outperform
non-feedback amplifiers

Negative feedback can be applied if:

Circuit dimensions are much smaller than the 
wavelength of the highest frequency of interest

Process cut-off frequency is much larger than the
highest frequency of interest

Determine valid combinations of T1 parameters A, B, C, D

Discuss their feasibility (comparison table or decision matrix)
Select the most promising solution

Design feedback configurations for these combinations

Design studies
level fo detailing
depends on experience

Result is a functional design
or concept design which is
assumed feasible

SLiCAP
SLiCAP
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Active antenna configurations



60(c) 2021 A.J.M. Montagne

+

-

Active antenna configurations

A, B



61(c) 2021 A.J.M. Montagne

Active antenna configurations
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Active antenna configurations
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Active antenna configurations

+

-

C, D
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Active antenna configurations
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Structured Electronic Design

Step 3
Feasibility of the noise requirements 

Anton J.M. Montagne
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
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Design of the feedback network and
the input stage of the controller
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
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Design of independent
performance aspects

design
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interaction
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design aspects

If the frequency range of temperature variations
overlaps with that of the signal, equivalent input
offset and bias variations have to be considered
as input noise sources.

Design of the feedback network and
the input stage of the controller
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SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

If the frequency range of temperature variations
overlaps with that of the signal, equivalent input
offset and bias variations have to be considered
as input noise sources.

Otherwise, the influence of temperature variations
can be dealt with at a later stage of the design.

Design of the feedback network and
the input stage of the controller
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SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

If the frequency range of temperature variations
overlaps with that of the signal, equivalent input
offset and bias variations have to be considered
as input noise sources.

Otherwise, the influence of temperature variations
can be dealt with at a later stage of the design.

Design of the feedback network and
the input stage of the controller

Design of the active antenna:

SLiCAP
SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

If the frequency range of temperature variations
overlaps with that of the signal, equivalent input
offset and bias variations have to be considered
as input noise sources.

Otherwise, the influence of temperature variations
can be dealt with at a later stage of the design.

Design a CS stage with sufficiently low
noise performance

Design of the feedback network and
the input stage of the controller

Design of the active antenna:
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

If the frequency range of temperature variations
overlaps with that of the signal, equivalent input
offset and bias variations have to be considered
as input noise sources.

Otherwise, the influence of temperature variations
can be dealt with at a later stage of the design.

Design a CS stage with sufficiently low
noise performance

Determine valid ranges for:

Design of the feedback network and
the input stage of the controller

Design of the active antenna:

SLiCAP
SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

If the frequency range of temperature variations
overlaps with that of the signal, equivalent input
offset and bias variations have to be considered
as input noise sources.

Otherwise, the influence of temperature variations
can be dealt with at a later stage of the design.

Design a CS stage with sufficiently low
noise performance

Determine valid ranges for:

Design of the feedback network and
the input stage of the controller

Design of the active antenna:

SLiCAP
SLiCAP
SLiCAP
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CS input stage design
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CS input stage design
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CS input stage design

Source-referred noise at the output of E1:
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CS input stage design

process parameter

Source-referred noise at the output of E1:
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CS input stage design

process parameter

1/f noise:

Source-referred noise at the output of E1:
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CS input stage design

 Lowest 1/f if:

process parameter

1/f noise:

Source-referred noise at the output of E1:
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CS input stage design

 Lowest 1/f if:
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Foor noise:

1/f noise:

Source-referred noise at the output of E1:
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CS input stage design
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Antenna-referred noise:
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1 : W = 1.20e-3, L = 1.25e-6, ID = 1.39e-03, S_f = 2.81e-17, f_ell = 3.41e+4, Ciss = 1.03e-11, IC=2.27e+0.

 Lowest 1/f if:
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Antenna-referred noise:
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CS input stage design

1 : W = 1.20e-3, L = 1.25e-6, ID = 1.39e-03, S_f = 2.81e-17, f_ell = 3.41e+4, Ciss = 1.03e-11, IC=2.27e+0.
2 : W = 9.00e-4, L = 1.71e-6, ID = 2.13e-03, S_f = 2.82e-17, f_ell = 3.34e+4, Ciss = 1.03e-11, IC=6.31e+0.

 Lowest 1/f if:

process parameter
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1/f noise:
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CS input stage design

1 : W = 1.20e-3, L = 1.25e-6, ID = 1.39e-03, S_f = 2.81e-17, f_ell = 3.41e+4, Ciss = 1.03e-11, IC=2.27e+0.
2 : W = 9.00e-4, L = 1.71e-6, ID = 2.13e-03, S_f = 2.82e-17, f_ell = 3.34e+4, Ciss = 1.03e-11, IC=6.31e+0.
3 : W = 6.00e-4, L = 2.61e-6, ID = 4.50e-03, S_f = 2.82e-17, f_ell = 3.27e+4, Ciss = 1.03e-11, IC=3.06e+1.

 Lowest 1/f if:
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CS input stage design
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3 : W = 6.00e-4, L = 2.61e-6, ID = 4.50e-03, S_f = 2.82e-17, f_ell = 3.27e+4, Ciss = 1.03e-11, IC=3.06e+1.

 Lowest 1/f if:

process parameter

Foor noise:

1/f noise:

Source-referred noise at the output of E1:

Antenna-referred noise:
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Structured Electronic Design

Step 4
Feasibility load drive requirements 

Anton J.M. Montagne
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements
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Design of the feedback network and
the output stage of the controller
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements
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design
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Design of the feedback network and
the output stage of the controller

Design of the active antenna:
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LTspice



91(c) 2021 A.J.M. Montagne

Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

Design a CS stage with sufficient static and
dynamic drive capability

Design of the feedback network and
the output stage of the controller

Design of the active antenna:
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SLiCAP
LTspice
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements
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performance aspects

design
aspects

interaction
between
design aspects

Design a CS stage with sufficient static and
dynamic drive capability

Determine valid  ranges for:

Design of the feedback network and
the output stage of the controller

Design of the active antenna:

SLiCAP
SLiCAP
SLiCAP
LTspice
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements
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Design of independent
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design
aspects

interaction
between
design aspects

Design a CS stage with sufficient static and
dynamic drive capability

Determine valid  ranges for:

Design of the feedback network and
the output stage of the controller

Design of the active antenna:

The performance-to-cost ratio can be improved
through application of balancing:

SLiCAP
SLiCAP
SLiCAP
LTspice
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

Design a CS stage with sufficient static and
dynamic drive capability

Determine valid  ranges for:

Design of the feedback network and
the output stage of the controller

Design of the active antenna:

The performance-to-cost ratio can be improved
through application of balancing:

Complementary-parallel or push-pull stage.

SLiCAP
SLiCAP
SLiCAP
LTspice
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

Design a CS stage with sufficient static and
dynamic drive capability

Determine valid  ranges for:

Design of the feedback network and
the output stage of the controller

Design of the active antenna:

The performance-to-cost ratio can be improved
through application of balancing:

Complementary-parallel or push-pull stage.

SLiCAP
SLiCAP
SLiCAP
LTspice
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CS output stage design
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CS output stage design
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CS output stage design

Smallest value for L: 180nm
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CS output stage design

Smallest value for L: 180nm
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CS output stage design

Smallest value for L: 180nm

Wpmos/Wnmos = 1/mobility_ratio

Determine W and M such that the load can
be driven with a sufficiently small drive (V3)
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CS output stage design

Smallest value for L: 180nm

Wpmos/Wnmos = 1/mobility_ratio

Determine W and M such that the load can
be driven with a sufficiently small drive (V3)

PMOS: W=40u, M=10
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CS output stage design

Smallest value for L: 180nm

Wpmos/Wnmos = 1/mobility_ratio

Determine W and M such that the load can
be driven with a sufficiently small drive (V3)

PMOS: W=40u, M=10
NMOS: W=40u, M=3
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CS output stage design

Smallest value for L: 180nm

Wpmos/Wnmos = 1/mobility_ratio

Determine W and M such that the load can
be driven with a sufficiently small drive (V3)

PMOS: W=40u, M=10
NMOS: W=40u, M=3
Bias voltage 0.2V
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CS output stage design

Smallest value for L: 180nm

Wpmos/Wnmos = 1/mobility_ratio

Determine W and M such that the load can
be driven with a sufficiently small drive (V3)

PMOS: W=40u, M=10
NMOS: W=40u, M=3
Bias voltage 0.2V
Quiescent current 1mA
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CS output stage design

Smallest value for L: 180nm

Wpmos/Wnmos = 1/mobility_ratio

Determine W and M such that the load can
be driven with a sufficiently small drive (V3)

PMOS: W=40u, M=10
NMOS: W=40u, M=3
Bias voltage 0.2V
Quiescent current 1mA
Drive requirement +/- 0.2V
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CS output stage design

Smallest value for L: 180nm

Wpmos/Wnmos = 1/mobility_ratio

Determine W and M such that the load can
be driven with a sufficiently small drive (V3)

PMOS: W=40u, M=10
NMOS: W=40u, M=3
Bias voltage 0.2V
Quiescent current 1mA
Drive requirement +/- 0.2V
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Structured Electronic Design

Step 5
Design of mid-band accuracy and bandwidth 

Anton J.M. Montagne
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
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design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP



109(c) 2021 A.J.M. Montagne

Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP

Design of the number of stages of the controller
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP

Design of the number of stages of the controller

Determine the number of stages required for a sufficiently large
mid-band (or DC) loop gain and loop gain-poles product.
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
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LTspice
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Design of the number of stages of the controller

Design of the active antenna:

Determine the number of stages required for a sufficiently large
mid-band (or DC) loop gain and loop gain-poles product.
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP

Use the asymptotic gain feedback model to verify the
loop gain and the loop gain-poles product of the 
two-stage solution.

Design of the number of stages of the controller

Design of the active antenna:

Determine the number of stages required for a sufficiently large
mid-band (or DC) loop gain and loop gain-poles product.
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP

Use the asymptotic gain feedback model to verify the
loop gain and the loop gain-poles product of the 
two-stage solution.

Design of the number of stages of the controller

Design of the active antenna:

Determine the number of stages required for a sufficiently large
mid-band (or DC) loop gain and loop gain-poles product.
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Bandwidth design
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Bandwidth design

+
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Loop gain, ref:

Second-order loop gain-poles product:
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Bandwidth design
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Loop gain, ref:

Second-order loop gain-poles product:
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Bandwidth design
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Loop gain, ref:

Second-order loop gain-poles product:

Circuit element values:
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Bandwidth design
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Loop gain, ref:

Second-order loop gain-poles product:

Circuit element values:
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Bandwidth design
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Loop gain, ref:

Second-order loop gain-poles product:

Circuit element values:

Achievable MFM bandwidth:
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Bandwidth design

+

-

+

-

+

-

+

-

+

-

+

-

Loop gain, ref:

Second-order loop gain-poles product:

Circuit element values:

Achievable MFM bandwidth:
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Bandwidth design
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Loop gain, ref:

Second-order loop gain-poles product:

Circuit element values:

Achievable MFM bandwidth:
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Structured Electronic Design

Step 6
Design of frequency response

(frequency compensation) 

Anton J.M. Montagne



127(c) 2021 A.J.M. Montagne

Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

Frequency compensation

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

Frequency compensation

Correct the pole-zero pattern of the uncompensated amplifier
without affecting other performance aspects.

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

Frequency compensation

Correct the pole-zero pattern of the uncompensated amplifier
without affecting other performance aspects.

The preferred method for low interaction is
phantom zero compensation.

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

Frequency compensation

Design of the active antenna:

Correct the pole-zero pattern of the uncompensated amplifier
without affecting other performance aspects.

The preferred method for low interaction is
phantom zero compensation.

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

Correct the frequency characteristic using a phantom zero at
the input of the amplifier.

Frequency compensation

Design of the active antenna:

Correct the pole-zero pattern of the uncompensated amplifier
without affecting other performance aspects.

The preferred method for low interaction is
phantom zero compensation.

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

Correct the frequency characteristic using a phantom zero at
the input of the amplifier.

Frequency compensation

Design of the active antenna:

Correct the pole-zero pattern of the uncompensated amplifier
without affecting other performance aspects.

The preferred method for low interaction is
phantom zero compensation.

Reduce the influence of out-of-band interference through
bandwidth limitation (Master Class)
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LTspice
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

Correct the frequency characteristic using a phantom zero at
the input of the amplifier.

Frequency compensation

Design of the active antenna:

Correct the pole-zero pattern of the uncompensated amplifier
without affecting other performance aspects.

The preferred method for low interaction is
phantom zero compensation.

Reduce the influence of out-of-band interference through
bandwidth limitation (Master Class)
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SLiCAP
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Phantom-zero compensation
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Phantom-zero compensation
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Circuit element values:
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Phantom-zero compensation
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Phantom-zero compensation
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Circuit element values:

Achievable MFM bandwidth:

Sum of the poles:
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Phantom-zero compensation
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Achievable MFM bandwidth:
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Phantom-zero compensation

+

-
+

-

Circuit element values:

Achievable MFM bandwidth:

Sum of the poles:

Frequency of the phantom zero
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Phantom-zero compensation
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Phantom-zero compensation

+
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Circuit element values:

Achievable MFM bandwidth:

Sum of the poles:

Frequency of the phantom zero

Value of the compensation resistor
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Phantom-zero compensation

+

-
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-

Circuit element values:

Achievable MFM bandwidth:

Sum of the poles:

Frequency of the phantom zero

Value of the compensation resistor
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Phantom-zero compensation

+

-
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-

Circuit element values:

Achievable MFM bandwidth:

Sum of the poles:

Frequency of the phantom zero

Value of the compensation resistor
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Structured Electronic Design

Step 7
Design of the biasing concept

(ideal bias sources) 

Anton J.M. Montagne
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
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Biasing concept
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
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Design of independent
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Biasing concept

Connect the circuit to the power supply
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
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Design of independent
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Biasing concept

Connect the circuit to the power supply

Redirect bias current sources over the power supply
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
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Design of independent
performance aspects

design
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interaction
between
design aspects
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Biasing concept

Connect the circuit to the power supply

Minimize the number of floating voltage sources

Redirect bias current sources over the power supply
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
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Biasing concept

Connect the circuit to the power supply

Minimize the number of floating voltage sources

Redirect bias current sources over the power supply

Apply error reduction techniques to improve biasing stability
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
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Biasing concept

Design of the active antenna:

Connect the circuit to the power supply

Minimize the number of floating voltage sources

Redirect bias current sources over the power supply

Apply error reduction techniques to improve biasing stability
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
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Design of independent
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1.8V supply

Biasing concept

Design of the active antenna:

Connect the circuit to the power supply

Minimize the number of floating voltage sources

Redirect bias current sources over the power supply

Apply error reduction techniques to improve biasing stability
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
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1.8V supply

Biasing concept

Design of the active antenna:

Connect the circuit to the power supply

Minimize the number of floating voltage sources

Redirect bias current sources over the power supply

Apply error reduction techniques to improve biasing stability

Redirected current sources
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
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1.8V supply

Biasing concept

Design of the active antenna:

Connect the circuit to the power supply

Minimize the number of floating voltage sources

AC coupling

Redirect bias current sources over the power supply

Apply error reduction techniques to improve biasing stability

Redirected current sources
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
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design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
LTspice

1.8V supply

Biasing concept

Design of the active antenna:

Connect the circuit to the power supply

Minimize the number of floating voltage sources

AC coupling

Redirect bias current sources over the power supply

Apply error reduction techniques to improve biasing stability

Redirected current sources

Over-all negative-feedback biasing
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
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1.8V supply

Biasing concept

Design of the active antenna:

Connect the circuit to the power supply

Minimize the number of floating voltage sources

AC coupling

Redirect bias current sources over the power supply

Apply error reduction techniques to improve biasing stability

Redirected current sources

Over-all negative-feedback biasing
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Biasing concept
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Biasing concept
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Biasing concept

Single supply

Bias current sources redirected via supply and combined
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Biasing concept

Single supply

Bias current sources redirected via supply and combined

AC coupling and over-all negative feedback biasing
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Biasing concept

Single supply

Bias current sources redirected via supply and combined

AC coupling and over-all negative feedback biasing

Two or three remaining floating voltage sources
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Structured Electronic Design

Step 8
Design of the sufficiently low weak nonlinearity

(ideal bias sources) 

Anton J.M. Montagne
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
LTspice
LTspice
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
LTspice
LTspice

Differential-error-to-gain ratio
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
LTspice
LTspice

Differential-error-to-gain ratio

Verify the biasing (operating point of all devices)
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
LTspice
LTspice

Differential-error-to-gain ratio

Verify the biasing (operating point of all devices)

Verify all performance aspects
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
LTspice
LTspice

Differential-error-to-gain ratio

Verify the biasing (operating point of all devices)

The weak nonlinearity can be reduced by:

Verify all performance aspects
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
LTspice
LTspice

Differential-error-to-gain ratio

Verify the biasing (operating point of all devices)

The weak nonlinearity can be reduced by:

Verify all performance aspects

Decreasing the differential-error-to-gain ratio per stage
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
LTspice
LTspice

Differential-error-to-gain ratio

Verify the biasing (operating point of all devices)

The weak nonlinearity can be reduced by:

Verify all performance aspects

Modify the operating conditions and/or device geometry

Decreasing the differential-error-to-gain ratio per stage
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
LTspice
LTspice

Differential-error-to-gain ratio

Verify the biasing (operating point of all devices)

The weak nonlinearity can be reduced by:

Verify all performance aspects

Modify the operating conditions and/or device geometry

Decreasing the differential-error-to-gain ratio per stage

Increase the number of stages



177(c) 2021 A.J.M. Montagne

Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
LTspice
LTspice

Differential-error-to-gain ratio

Design of the active antenna:

Verify the biasing (operating point of all devices)

The weak nonlinearity can be reduced by:

Verify all performance aspects

Modify the operating conditions and/or device geometry

Decreasing the differential-error-to-gain ratio per stage

Increase the number of stages
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
LTspice
LTspice

Verification showed sufficiently low distortion

Differential-error-to-gain ratio

Design of the active antenna:

Verify the biasing (operating point of all devices)

The weak nonlinearity can be reduced by:

Verify all performance aspects

Modify the operating conditions and/or device geometry

Decreasing the differential-error-to-gain ratio per stage

Increase the number of stages
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP
LTspice
LTspice

Verification showed sufficiently low distortion

Differential-error-to-gain ratio

Design of the active antenna:

Verify the biasing (operating point of all devices)

The weak nonlinearity can be reduced by:

Verify all performance aspects

Modify the operating conditions and/or device geometry

Decreasing the differential-error-to-gain ratio per stage

Increase the number of stages



180(c) 2021 A.J.M. Montagne

Check performance
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Check performance

Frequency response
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Check performance

Antenna referred noise
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Check performance

IMD
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Check performance

Frequency response Antenna referred noise IMD
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Structured Electronic Design

Step 9
Design of the bias sources 

Anton J.M. Montagne
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity

Specification of bias sources
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP

SLiCAP / LTspice

LTspice
LTspice
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity

Specification of bias sources
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP

SLiCAP / LTspice

LTspice
LTspice

Same 
procedure

for each
bias source
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity

Specification of bias sources
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP

SLiCAP / LTspice

LTspice
LTspice

Same 
procedure

for each
bias source
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity

Specification of bias sources
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP

SLiCAP / LTspice

LTspice
LTspice

Same 
procedure

for each
bias source

Design of bias sources
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity

Specification of bias sources
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP

SLiCAP / LTspice

LTspice
LTspice

Same 
procedure

for each
bias source

Design of bias sources

Find an operating mechanism:
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity

Specification of bias sources
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP

SLiCAP / LTspice

LTspice
LTspice

Same 
procedure

for each
bias source

Design of bias sources

Find an operating mechanism:

Element with voltage or current source character
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity

Specification of bias sources
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP

SLiCAP / LTspice

LTspice
LTspice

Same 
procedure

for each
bias source

Design of bias sources

Find an operating mechanism:

Element with voltage or current source character

Study in which way performence aspects can be
affected by design
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity

Specification of bias sources
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP

SLiCAP / LTspice

LTspice
LTspice

Same 
procedure

for each
bias source

Design of bias sources

Find an operating mechanism:

Element with voltage or current source character

Study in which way performence aspects can be
affected by design

If necessary: improve performance versus costs through
application of error-reduction techniques
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Setting up specifications
Design of amplifier type: A, B, C, D

Feasibility of noise (temperature drift) specifications
Feasibility of static and dynamic drive requirements

Design of midband accuracy and amplifier bandwidth
Design of the frequency response

Design of the biasing (ideal sources)
Design of sufficiently low weak nonlinearity

Specification of bias sources
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Design of independent
performance aspects

design
aspects

interaction
between
design aspects

SLiCAP
SLiCAP
SLiCAP
LTspice
SLiCAP
SLiCAP

SLiCAP / LTspice

LTspice
LTspice

Same 
procedure

for each
bias source

Design of bias sources

Find an operating mechanism:

Element with voltage or current source character

Study in which way performence aspects can be
affected by design

If necessary: improve performance versus costs through
application of error-reduction techniques


