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offset and bias variations have to be considered
as input noise sources.

design
aspects

Otherwise, the influence of temperature variations
can be dealt with at a later stage of the design.

Design of the active antenna:

Design a CS stage with sufficiently low
noise performance

Controller input stage

Function, performance,
costs and environment
Feedback configuration
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Design of independent

performance aspects interaction
« between
design aspects
14 e
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications X SLICAP

Design of the feedback network and
the input stage of the controller

If the frequency range of temperature variations
overlaps with that of the signal, equivalent input

. N : s C o -
offset and bias variations have to be considered y S OO design
as input noise sources. % E© % aspects

-
Otherwise, the influence of temperature variations g § % 5
can be dealt with at a later stage of the design. O I % 8
o S O
- . Q. @)
Design of the active antenna: oy 2
C C U
Design a CS stage with sufficiently low .S © 0 5
noise performance O 4& S S
Q
Determine valid ranges for: Ipg, W, L, M 2 oY ~
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Design of independent

performance aspects interaction
« between
design aspects
14 e
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications X SLICAP

Design of the feedback network and
the input stage of the controller

If the frequency range of temperature variations
overlaps with that of the signal, equivalent input

. N : s C o -
offset and bias variations have to be considered y S OO design
as input noise sources. % E© % aspects

-
Otherwise, the influence of temperature variations g § % 5
can be dealt with at a later stage of the design. OITE &
T 2cc
. . 39 3 =
Design of the active antenna: oy 2
C C U
Design a CS stage with sufficiently low .S © 0 5
noise performance O 4& S S
Q
: : : o O
Determine valid ranges for: Ipg, W, L, M 2 oY
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CS input stage design
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CS input stage design

El
LAY C1 vNn
| | 0 M~  out
Vil + + I+ @) b'lj
value=0 {CA} {Cf} NM18 noise
dc=0 -1 N e |D={|TD} IG={IG} W={W} L={L}
dcvar=0
oy ] i +
noise - 4__ b A4 A V4
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CS input stage design

LA C1
I 2 |
lied ' \ cn {c_%' wo Source-referred noise at the output of E1:
dovrsd C) <> T " © 10-t0}16=016} W=y L=
noise=0 V 4__- - D .;7 J
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CS input stage design

El

LA C1
I 2 |
oluens ' \ cn {c_%' wo Source-referred noise at the output of E1:
dovrsd C) <> T " © 10-t0}16=016} W=y L=
noise=0 V 4__- - D .;7 J

G _ 4kTnl (1 , ciSS)Q (1+Q>
Un Jm I Cs f

fo =afr = azZ=— «a: process parameter
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CS input stage design

El

LA C1
I 2 |
oluens ' \ cn {c_%' wo Source-referred noise at the output of E1:
dovrsd C) <> T " © 10-t0}16=016} W=y L=
noise=0 V 4__- - D .;7 J

G _ 4kTnl (1 , ciSS)Q (1+Q)
Un Jm I Cs f

fo=afr = az¥=— «: process parameter

nf chiss

2
1/f noise: S, = 2kinla (1 | céss)
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CS input stage design

El

LA C1
I 2 |
oluens ' \ cn {c_%' wo Source-referred noise at the output of E1:
dovrsd C) <> T " © 10-t0}16=016} W=y L=
noise=0 V 4__- - D .;7 J

G _ 4kTnl (1 , ciSS)Q (1+Q)
Un Jm I Cs f

fo=afr = az¥=— «: process parameter

nf chiss

2
1/f noise: S, = 2kinla (1 | céss)

Lowest 1/fif: c¢;,s = C

(c) 2021 A.J.M. Montagne 80



CS input stage design

El

LA C1
I 2 |
oluens ' \ cn {c_%' wo Source-referred noise at the output of E1:
dovrsd C) <> T " © 10-t0}16=016} W=y L=
noise=0 V 4__- - D .;7 J

G _ 4kTnl (1 , ciSS)Q (1+Q)
Un Jm I Cs f

fo=afr = az¥=— «: process parameter

nf chiss

2
1/f noise: S, = 2kinla (1 | céss)

Lowest 1/f if: ¢;.s = C

2
Foor noise: S5, = 4’<an (1 | c)
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El
{L_A}

CS input stage design

vn
7\ out

Vil + + |+ )
value=0 {C_A} {C f}
dc=0 P
dcvar=0

ico— - - - +
noise=0 < 4__ D <

\J

5 Source-referred noise at the output of E1:

e NM18 noise
ID={ID} IG={IG} W={W} L={L}

v o _ 4kTnr (1 | CiSS)Q(Hﬁ)
Un dm - O J

"":::I.:.:::::::I
———==inoise, run: 1 -

Source-referred noise spectrum

10-154 -

~inoise run 1 fe = afr = azZ™— «: process parameter
. —inoise, run: 3. LSS

2
...... . _ _ 2kETnl'x | Ciss
|- 1/f noise: Svnf = e (1 | CS)

spectral density [V?/HZ]

= Lowest 1/f if: ¢35 = C

frequency [Hz]

Antenna-referred noise:

B T T T

10’ | "””1'08

2
Foor noise: S, = 4kinl (1 | C)

n gm
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CS input stage design

El
{L_A}

II . KYQ out
al + + | + Ned

el C) <> e <53 u1 Source-referred noise at the output of E1:

o 0L, e e
G _ 4kTnT (1 , ciSS)Q (1+E)
Vy — G T C. 7
Source-referred noise spectrum

dcvar=0 ID={ID} IG={IG} W={W} L={L}
.......... T s rm 1 fo = afr = as2=— «: process parameter

noise=0 V 4__- - D _;7 J
inoise, run: 3 | 27TCiSS

10715 4

2
B - |- 1/f noise: Svnf = e (1 - )

""" """ LOweSt 1/f |f CiSS — CS

spectral density [V?/HZ]

2
R R e ————s Foor noise: G, = #ELnl (1 | C)
103 104 10° 106 107 108 m dm

frequency [Hz]

Antenna-referred noise:
1:W=1.20e-3,L=1.25e-6,ID =1.39e-03,S f=2.81e-17,f ell = 3.41e+4, Ciss = 1.03e-11, IC=2.27e+0.
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CS input stage design

El
{L_A}

I I . KYQ out
Vil N

et C) ' <> a8 o Source-referred noise at the output of E1:

- in e NM18 noise
c= ID={ID} IG={IG} W={W} L={L}
dcvar=0

R e v v 2\
S, — 4kg€TF (1 | césss) (1+ %)

Source-referred noise spectrum

10715

R - :.:::::::I
__________ —=—inoise, run: 1+
AN ~i=—inoise, run: 2 |
i inoise, run: 3 |

fo=oafr =az2m— q: process parameter

27‘('61'38

2
_________ ]_/f noise: Sv _ 2kT'nl o (1 | Ciss)

nf chiss Cs

spectral density [V?/HZ]

- R O et NN | owest L if: . — C.

: 2
SRSt RS IS S NS NI U ITH N N B S ....... FOOr nOise: S’U — Ak inl (1 I Ciss)
103 10 105 106 107 108 n dm

frequency [Hz]

Antenna-referred noise:

1:W=1.20e-3,L=1.25e-6,ID =1.39e-03,S f=2.81e-17,f ell = 3.41e+4, Ciss = 1.03e-11, IC=2.27e+0.
2: W =9.00e-4,L=1.71e-6,ID =2.13e-03,S f=2.82e-17, f ell = 3.34e+4, Ciss = 1.03e-11, IC=6.31e+0.
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CS input stage design

El
{L_A}

r\Q out
V1 + + | + - g

dc=0
dcvar=0

ise= - - - +
noise=0 < 4__ D < -

, e NM18_noise
ID={ID} IG={IG} W={W} L={L}

S,, =

mn

Source-referred noise spectrum

10715

O T T S A |
—————=—1inoise, run: 1

spectral density [V?/HZ]

L Y Y T T T TS
frequency [Hz]

Antenna-referred noise:

1:W=1.20e-3,L=1.25e-6,ID =1.39e-03,S f=2.81le-17,f e
2:W=9.00e-4,L=1.71e-6,ID =2.13e-03,S f=2.82e-17,f e
3:W=06.00e-4,L=2.6le-6,ID =4.50e-03,S f=2.82e-17,f e

el C) <> e <53 u1 Source-referred noise at the output of E1:

A4k T'nI’ 2 f
n L Ciss JL
gm (1 - Cs ) (1 T f)

fo=oafr =az2m— q: process parameter

27‘('61'38

2
........ 1/f noise: S, = 2kinla (1 | C)

Cs

nf chiss

| ____::: owest Ufif: o — .

2
Foor noise: S, = 2kinl (1 | C)

dm

= 3.41e+4, Ciss = 1.03e-11, IC=2.27e+0.
= 3.34e+4, Ciss = 1.03e-11, IC=6.31e+0.
= 3.27e+4, Ciss = 1.03e-11, IC=3.06e+1.
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CS input stage design

El
{L_A}

I I . KYQ out

= C) + <+> {(‘!_IA} s NV Source-referred noise at the output of E1:
dc=0 - , Ea NM18_noise

4k T'nI’ C 2 f

n iss Y

Svn gm (1 I Cs ) (1 —I_ _J)

dcvar=0 ID={ID} IG={IG} W={W} L={L}
fr=afr =asdm— «: process parameter

o h i i |
noise=0 q D
2 7T C’i S S

Source-referred noise spectrum

10715

O T T S A |
— ;;§§_|n0|se; run: 1_

2
........ . _ _ 2kETnl'x | Ciss
________ 1/f noise: Svn, = “nferss (1 | CS)

| ____::: owest Ufif: o — .

spectral density [V?/HZ]

T Foor noise: Svn _ 4kTnl (1 | Céfss)

”'1'03 - ””'1'04 ”'1'05 ”'1'06 107 108
frequency [Hz]

dm

Antenna-referred noise:
1:W=1.20e-3,L=1.25e-6,ID =1.39e-03,S f=2.81e-17,f ell = 3.41e+4, Ciss = 1.03e-11, IC=2.27e+0.

2:W=9.00e4,L=1.71e-6,ID =2.13e-03,S f=2.82e-17,f ell = 3.34e+4, Ciss = 1.03e-11, IC=6.31e+0.
3:W=06.00e-4,L=2.61le-6,ID =4.50e-03,S f=2.82e-17,f ell = 3.27e+4, Ciss = 1.03e-11, IC=3.06e+1.
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Structured Electronic Design

Step 4
Feasibility load drive requirements

Anton J.M. Montagne
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Design of independent

performance aspects interaction
between
l ) design aspects
9
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements X LIspice
8‘%’ SL9 design
c w280 aspects
s & © 35
= ) I
g o % S5 S
LSESS
C =S E5S
D Q O o
Q- Vg
<O v = qL)
S5 885
S8 €S
€293 5
0P O
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Design of independent

performance aspects interaction
between
l ) design aspects
9
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements X LIspice
Design of the feedback network and
the output stage of the controller
8‘%’ 539 design
c w280 aspects
s &EOHH
c
S535%5
LSEES
55 5<3
Q « O
Q -V g~
<O v = Q
C C U o=
QL 0 @50
CLs5s
S820 5§
0P O
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Design of independent

performance aspects interaction
between
l ) design aspects
9
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements X LIspice
Design of the feedback network and
the output stage of the controller
Design of the active antenna:
8‘40:‘; SY9 design
c w280 aspects
c & © 83
=~ ) )
S822%
T é =
D Q O o
Q -V g~
<O v = Q
C C U o=
QL 0 @50
CLs5s
<2835
cof " O
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Design of independent

performance aspects interaction
between
‘ “‘ design aspects
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements X LIspice
Design of the feedback network and
the output stage of the controller
Design of the active antenna:
Design a CS stage with sufficient static and g IS S & o design
dynamic drive capability s SEJ 5 0 © aspects
T = © T 0
8233
t2€c=
D Q O @
Q~ U g
<O v = E
EEEL
S © 5 O
CLs5s
SE8SE
cof " O
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Design of independent

performance aspects interaction
between
design aspects
l &%
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements X LIspice
Design of the feedback network and
the output stage of the controller
Design of the active antenna:
Design a CS stage with sufficient static and g IS S & o design
dynamic drive capability % QEJ -I% oL aspects
. . o 0 on
Determine valid ranges for: Ipg, Vpg, W, L, M § § 25 s
gsfis
D Q O @
Q~ U g
<O v = E
S5 885
S8 €S
S2935
cof " O
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Design of independent

performance aspects interaction
between
l ) design aspects
9@
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements X LIspice
Design of the feedback network and
the output stage of the controller
Design of the active antenna:
Design a CS stage with sufficient static and g IS S & o design
dynamic drive capability c Y5 O aspects
. . © g SERT IR
Determine valid ranges for: Ipg, Vpg, W, L, M § S 25 s
O = ;
The performance-to-cost ratio can be improved T é c % %
through application of balancing: GCJl Q 8 . O
.0 v 2 O
C C U o=
QL 0 @50
~ o Q- <
O < o -+
S89205
cof " O
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Design of independent

performance aspects interaction
between
l ) design aspects
9@
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements X LIspice
Design of the feedback network and
the output stage of the controller
Design of the active antenna:
Design a CS stage with sufficient static and g IS S & o design
dynamic drive capability % QEJ -I% _Ig _Ig aspects
Determine valid ranges for: Ipg, Vpg, W, L, M § S g?, =
-
O "= i O O
The performance-to-cost ratio can be improved T é c £ 5
through application of balancing: oS L O
| -
Complementary-parallel or push-pull stage. - E % % i
O ® <
= wn Q =
O < g -+
S89205
cof " O
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Design of independent

performance aspects interaction
between
l ) design aspects
9@
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements X LIspice
Design of the feedback network and
the output stage of the controller
Design of the active antenna:
Design a CS stage with sufficient static and g IS S & o design
dynamic drive capability % QEJ -I% "g _Ig aspects
Determine valid ranges for: Ipg, Vpg, W, L, M § S g?, =
-
O "= i O O
The performance-to-cost ratio can be improved T é c £ 5
through application of balancing: oS L O
| -
Complementary-parallel or push-pull stage. - E % % i
O ® <
= wn Q =
O < g -+
S89205
cof " O
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CS output stage design
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CS output stage design

File View PlotSettings Simulation Tools Window Help

oA

4 OutputStage.asc ¥ OutputStageraw |

A8 QQAR RIDERE b 0w

&% QutputStage.raw

V(out)

OutputStage.asc .-JD.I.’_(.I
V1
|
E1 Cl8pmos
+ M1
_ — 0.9
1 R1 R2
out
V3 v4 c1l 50 50
|_ V2
M2
2.5p
{V_B} L C18nmos
I
.param V_B=0.3 0-9
lib CMOS18TT.lib
.dcVv3-0.50.50.01
.step param V_B 0 0.5 0.05
x=518.13mV y=24.19mV | /él
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CS output stage design

File View PlotSettings Simulation Tools Window Help

DS HTFERQAAR GG ERE » Dad OE

4 OutputStage.asc ¥ OutputStageraw |

V(out)

Smallest value for L: 180nm

, V1
|
E1 Cl8pmos +
+ M1 —
_ — 0.9
1 R1 R2
out
V3 V4 a 50 50
|_ V2
! 2.5p M2 +
{V_E} L C18nmos —
|
.param V_B=0.3 L
lib CMOS18TT.lib
.dcVv3-0.50.50.01
.step param V_B 0 0.5 0.05
x=518.13mV y=24.19mV l /d
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CS output stage design

File View PlotSettings Simulation Tools Window Help

4 OutputStage.asc ¥ OutputStage.raw |

NS HDFLRAAR (LD EHREY 4 DEd OE

&% QutputStage.raw

V(out)

OutputStage.asc N .-.lﬂ.lij
l V1
|
E1 Cl8pmos +
+ M1 e
_ — 0.9
1 R1 R2
out
V3 v4 c1l 50 50
'_ V2
M2
! 2.5p +
{V_B} L C18nmos —
I
.param V_B=0.3 0-9
lib CMOS18TT.lib
.dcVv3-0.50.50.01
.step param V_B 0 0.5 0.05
x=518.13mV y=24.19mV [ /4

Smallest value for L: 180nm

Wpmos/Wnmos = 1/mobility _ratio
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CS output stage design

File View PlotSettings Simulation Tools Window Help

P ET e RQARR I EDR s o

=4
1, OutputStage.asc ¥ OutputStage.raw |

2 QutputStage.raw _Jﬂ]ll
V(ou

Smallest value for L: 180nm
Wpmos/Wnmos = 1/mobility ratio

Determine W and M such that the load can
be driven with a sufficiently small drive (V3)

OutputStage.asc ol x|
V1
1
E1 | Cl8pmos +
+ M1 —
_ — 05
1 R1 R2
out
V3 V4 a 50 50
— V2
! M2
2.5p +
{V_B} 1 C18nmos —
|
0.9
.param V_B=0.3
lib CMOS18TT.lib
.dcVv3-0.50.50.01
.step param V_B 0 0.5 0.05
x=518.13mV y=24.19mV o
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CS output stage design

File View Plot Settings Simulation Tools Window Help

D@ E XL QRQAR R ERR L2Easn OS5 7/

'l: OutputStage.asc ;C,f OutputStage.raw I

2% OutputStage.raw
V(out)

=101

OutputStage.asc _._[ﬂ]ﬁ]
V1
L
E1 Cl8pmos
t M1
_ — 0.9
1 R1 R2
out
V3 V4 a 50 50
— V2
M2
2.5p
{V_B} 1 C18nmos
I
.param V_B=0.3 0.9
lib CMOS18TT.lib
.dcVv3-0.50.50.01
.step param V_B 0 0.5 0.05
x=518.13mV y=24.19mV o

Smallest value for L: 180nm
Wpmos/Wnmos = 1/mobility ratio

Determine W and M such that the load can

be driven with a sufficiently small drive (V3)

PMOS: W=40u, M=10

(c) 2021 A.J.M. Montagne 101



CS output stage design

File View Plot Settings Simulation Tools Window Help

D@ E XL QRQAR R ERR L2Easn OS5 7/

'( OutputStage.asc ;’:,f OutputStage.raw I

2 QutputStage.raw __[,D]l]
V(out)

OutputStage.asc _._[ﬂ]l]
| V1
I
E1 Cl8pmos +
+ M1 —
_ o 05
1 R1 R2
out
V3 V4 a 50 50
— V2
! M2
2.5p +
{V_B} 1 C18nmos —
I
.param V_B=0.3 0.9
lib CMOS18TT.lib
.dcVv3-0.50.50.01
.step param V_B 0 0.5 0.05
x=518.13mV y=2419mV o

Smallest value for L: 180nm

Wpmos/Wnmos = 1/mobility ratio

Determine W and M such that the load can

be driven with a sufficiently small drive (V3)

PMOS: W=40u, M=10
NMOS: W=40u, M=3
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CS output stage design

File View Plot Settings Simulation Tools Window Help

D@ E XL QRQAR R ERR L2Easn OS5 7/

'( OutputStage.asc i’:,f OutputStage.raw I

2 QutputStage.raw .._LD]L]
V( 01‘1:\,

Smallest value for L: 180nm
Wpmos/Wnmos = 1/mobility ratio

Determine W and M such that the load can
be driven with a sufficiently small drive (V3)

OutputStage.asc ol x|
D - PMOS: W=40u, M=10
E1 ‘i C18pmos + NMOS. W=4OU, M=3
i o —/ Bias voltage 0.2V
1 R1 R2
= N\ /\ out _/\ /\ N D
V3 V4 a 50 50
|_ V2
T +
{V_B} : Cl8nmos —
.param V_B=0.3 =
lib CMOS18TT.lib
.dcVv3-0.50.50.01
.step param V_B 0 0.5 0.05
x=518.13mV _y = 24.19mV [
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CS output stage design

File View Plot Settings Simulation Tools Window Help

D@ E XL QRQAR R ERR L2Easn OS5 7/

1 OutputStage.asc ¥ OutputStage.raw |

2% OutputStage.raw

Smallest value for L: 180nm
Wpmos/Wnmos = 1/mobility ratio

Determine W and M such that the load can
be driven with a sufficiently small drive (V3)

OutputStage.asc ol x|
. PMOS: W=40u, M=10
E1 ‘i C18pmos + NMOS. W=4OU, M=3
i 7 = Bias voltage 0.2V
1 AT o A Quiescent current 1ImA
|_ V2

D T ﬁ :

{V_B} 1 C18nmos —

.dcVv3-0.50.50.01
.step param V_B 0 0.5 0.05

x=518.13mV y=24.19mV 4
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CS output stage design

File View Plot Settings Simulation Tools Window Help

PEHTELRQAAR R DR s DEMOS /

‘( OutputStage.asc ;’:,f OutputStage.raw I

=10l x|
V(out)

Smallest value for L: 180nm
Wpmos/Wnmos = 1/mobility ratio

Determine W and M such that the load can
be driven with a sufficiently small drive (V3)

OutputStage.asc ol x|
. PMOS: W=40u, M=10
E1 ‘i C18pmos + NMOS. W=4OU, M=3
i 7 = Bias voltage 0.2V
1 AT o A Quiescent current 1ImA
" R 0 S0 Drive requirement +/- 0.2V
|_ V2

D T ﬁ :

{V_B} 1 C18nmos —

.dcVv3-0.50.50.01
.step param V_B 0 0.5 0.05

x=518.13mV y=24.19mV 4
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CS output stage design

File View Plot Settings Simulation Tools Window Help

DS EHD XL QAQAR KRN ERE L 2asm o8 /

‘( OutputStage.asc ;C,f OutputStage.raw I

2% OutputStage.raw

Smallest value for L: 180nm
Wpmos/Wnmos = 1/mobility ratio

Determine W and M such that the load can
be driven with a sufficiently small drive (V3)

OutputStage.asc ol x|
. PMOS: W=40u, M=10
E1 ‘i C18pmos + NMOS. W=4OU, M=3
i 7 = Bias voltage 0.2V
1 AT o A Quiescent current 1ImA
" R 0 S0 Drive requirement +/- 0.2V
|_ V2

D T ﬁ :

{V_B} 1 C18nmos —

.dcVv3-0.50.50.01
.step param V_B 0 0.5 0.05

x=518.13mV y=24.19mV 4
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Structured Electronic Design

Step 5
Design of mid-band accuracy and bandwidth

Anton J.M. Montagne
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Design of independent

performance aspects interaction
between
design aspects
| R gn asp
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth X SLICAP

design
aspects

Function, performance,
costs and environment
Feedback configuration
Controller input stage
Controller output stage
Loop gain poles product
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Design of independent

performance aspects interaction
between
design aspects
| R gn asp
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth X SLICAP

Design of the number of stages of the controller

design
aspects

Function, performance,
costs and environment
Feedback configuration
Controller input stage
Controller output stage
Loop gain poles product
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Design of independent

performance aspects interaction
between
l ) design aspects
9
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth X SLICAP
Design of the number of stages of the controller
Determine the number of stages required for a sufficiently large
mid-band (or DC) loop gain and loop gain-poles product.
s Cc o0 o+ :
VS sooY design
c2ES 883 aspects
S ECHH S P
c o
S535%5¢S
S
o309
U
S2¥F I C
QT @50 ®
~ n Q -~ S (@)
SHhPoca
. O O Q
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Design of independent

performance aspects interaction
between
l ) design aspects
9

Setting up specifications |V SLICAP

Design of amplifier type: A, B, C, D| |V SLICAP

Feasibility of noise (temperature drift) specifications \'4 SLICAP

Feasibility of static and dynamic drive requirements \'4 LIspice

Design of midband accuracy and amplifier bandwidth X SLICAP

Design of the number of stages of the controller
Determine the number of stages required for a sufficiently large
mid-band (or DC) loop gain and loop gain-poles product.
N ) ) .
Design of the active antenna: S S _S > O S design
CER L S aspects

=~ S -t I =
IEEFE
T2EcEw0
oS o~ 2 o
Qg Cg°a
SCcE3TLC
QU505
~ n Q -~ S (@)
SHhPoca
. O O Q
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Design of independent

performance aspects interaction
between
‘ “‘ design aspects
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth X SLICAP
Design of the number of stages of the controller
Determine the number of stages required for a sufficiently large
mid-band (or DC) loop gain and loop gain-poles product.
: : v SEYYG design
Design of the active antenna: O 5.0 DD 3 9
S B85 T aspects
Use the asymptotic gain feedback model to verify the G < ©nn O
loop gain and the loop gain-poles product of the § S % 55 Q
two-stage solution. L.g S E 239
O So0~- 270
Q. Qo -0 S
N VIR
ccCcuol2C
O @S5 ®
SnwQoge SO
SHhPoca
. O O Q
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Design of independent

performance aspects interaction
between
‘ “‘ design aspects
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth X SLICAP
Design of the number of stages of the controller
Determine the number of stages required for a sufficiently large
mid-band (or DC) loop gain and loop gain-poles product.
: : oS QLG design
Design of the active antenna: O 5.0 DD 3 9
S B85 T aspects
Use the asymptotic gain feedback model to verify the G < ©nn O
loop gain and the loop gain-poles product of the § S % 55 Q
two-stage solution. L.g S E 239
O So0~- 270
Q. Qo -0 S
N VIR
ccCcuol2C
O @S5 ®
SnwQoge SO
SHhPoca
. O O Q
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Bandwidth design

(c) 2021 A.J.M. Montagne 114



A
~
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Q
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Bandwidth design
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L
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Bandwidth design

I Cy =12,
l,__.l.
>
L R,
— —
sy 11 Uz R
L L
1L L L
Cy = 2C"
.
+ +
— .gﬂ11T‘ —— 'gﬂ@2l' }%c

Cisso
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Bandwidth design

Cy = 2C',

L
[ 4]

L

RYEERA

Cisso

Loop gain, ref: g,
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Bandwidth design

Cy = 2C',

L
[ 4]

L

RYEERA

Cisso

R
_I_
Re | [ Ve
R,
_I_
Re | [ Ve

Loop gain, ref: g,

L=—

29my Ymg e Cr+Cs+eiss

Cr

1

SCissq <1—|—32R

oF (Cs+c7;ssl)

¢ Cr+Cstcigs

1

)
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Bandwidth design

I Cr = 12C,
il
C, = (C, |F|:
Nl
O [ 1S |-
— L L
- 1 L L
Cy = 12C,
C, = (C, |
+ | + +

Cisso

Loop gain, ref: g,

Cf
29mq Gmg e CF+Cs+Cissa,

L =—

C Cs+c;
f( S zssl)

Second-order loop gain-poles product:
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Bandwidth design

P2/ .
" Cr =04 Loop gain, ref: g,
|_1- I— 29mq gmgy Re Cf+ciﬁ-cissl
Cs — 601/4 | |-|: Rc SCissqg (1‘|‘82RC CZ:’J;(_FC;;—'_CSLS;))
N +
V. = (E <> JE Y l JE R. v, Second-order loop gain-poles product:
— - _ 9mq 9moy
—— r l LP2 - Cissg (Cs+cissl)
1 Cy = 12C',
C, = 1C", R,
+ " + + +

_ — Im — Jmo
v, (]) L f . | r.| | v
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Bandwidth design

Cy = 2C',

L
[ 4]

L

RYEERA

Cisso

Loop gain, ref: g,

Cf
29mq Gmg e CF+Cs+Cissa,

L =—

Cy(Csteiss, )

SCissq (1—|—52RC T;F0s7e;

18851

)

Second-order loop gain-poles product:

. dmq19m
LP2 o C’L’SSQ (5s+cissl)

Circuit element values:
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Bandwidth design

Cy = 2C',

L
[ 4]

L

RYEERA

Cisso

Loop gain, ref: g,

Cf
29mq Gmg e CF+Cs+Cissa,

L =—

Cy(Csteiss, )

SCissq (1—|—52RC T;F0s7e;

18851

)

Second-order loop gain-poles product:

. dmq19m
LP2 o C’L’SSQ (5s+cissl)

Circuit element values:

Jm, = 23m
Jm, = 28m
Cs =5p

Ciss; = 1D
Ciss, = 1.2D
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Bandwidth design

Cisso

r Cr = 12C,
l,__.l.

o

L

15 f 1o LE

L L

1 L L
Cp = 02C
| -

+ +

Loop gain, ref: g,

Cf
29mq Gmg e CF+Cs+Cissa,

Cel(Cg+cy
SCissg <1—|—52RC CJ;(‘FCS_FZ.SSl))

1881

L =—

Second-order loop gain-poles product:

. dmq19m
LP2 o CiSSQ (5s+cissl)

Circuit element values:

gm, = 23m
Jm, = 28m
Cs =5p
Ciss; = 1P
Cisss — 1.2D

Achievable MFM bandwidth:
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Bandwidth design

Cisso

r Cr = 12C,
l,__.l.

o

L

15 f 1o LE

L L

1 L L
Cp = 02C
| -

+ +

Loop gain, ref: g,

Cf
29mq Gmg e CF+Cs+Cissa,

Cel(Cg+cy
SCissg (1—|—52RC CJ;(‘FCS_F:SSl))

18851

L =—

Second-order loop gain-poles product:

. dmq19m
LP2 o C’L’SSQ (5s+cissl)

Circuit element values:

gm, = 23m
Jm, = 28m
Cs =5p
Ciss; = 1p
Ciss, = 1.2D

Achievable MFM bandwidth:
By = 5=+/LP, = 1.5GHz
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Bandwidth design

Cisso

I Cr = 12C,
l,__.l.
o
L
AR
L L
1 L L
Cp = 02C
| -
+ +

Loop gain, ref: g,

Cf
29mq Gmg e CF+Cs+cissa;

CelCg+c;
SCissg <1—|—52RC CJ;(‘FCS_FZ.SSl))

1881

L =—

Second-order loop gain-poles product:

_ dmq19m
LP2 o CiSSQ (5s+cissl)

Circuit element values:

gm, = 23m
Jm, = 28m
Cs =5p
Ciss; = 1p
Ciss, = 1.2D

Achievable MFM bandwidth:
By = 5=+/LP, = 1.5GHz
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Structured Electronic Design

Step 6
Design of frequency response
(frequency compensation)

Anton .M. Montagne
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Design of independent

performance aspects interaction
between
design aspects
| R gn asp
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response X SLICAP

« design
aspects

PZ pattern

Function, performance,
costs and environment
Feedback configuration
Controller input stage
Controller output stage
Loop gain poles product
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Design of independent

performance aspects interaction
between
design aspects
| R gn asp
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response X SLICAP

Frequency compensation

« design
aspects

PZ pattern

Function, performance,
costs and environment
Feedback configuration
Controller input stage
Controller output stage
Loop gain poles product
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Design of independent

performance aspects interaction
between
design aspects
| R gn asp
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response X SLICAP

Frequency compensation

Correct the pole-zero pattern of the uncompensated amplifier
without affecting other performance aspects.

« design
aspects

PZ pattern

Function, performance,
costs and environment
Feedback configuration
Controller input stage
Controller output stage
Loop gain poles product
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Design of independent

performance aspects interaction
between
design aspects
| R gn asp
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response X SLICAP

Frequency compensation

Correct the pole-zero pattern of the uncompensated amplifier « design
without affecting other performance aspects. aspects
The preferred method for low interaction is
phantom zero compensation.

PZ pattern

Function, performance,
costs and environment
Feedback configuration
Controller input stage
Controller output stage
Loop gain poles product
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Design of independent

performance aspects interaction
between
design aspects
| R gn asp
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response X SLICAP

Frequency compensation

Correct the pole-zero pattern of the uncompensated amplifier « design
without affecting other performance aspects. aspects
The preferred method for low interaction is
phantom zero compensation.

PZ pattern

Design of the active antenna:

Function, performance,
costs and environment
Feedback configuration
Controller input stage
Controller output stage
Loop gain poles product
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Design of independent

performance aspects interaction
between
design aspects
| R gn asp
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response X SLICAP

Frequency compensation

Correct the pole-zero pattern of the uncompensated amplifier « design
without affecting other performance aspects. aspects
The preferred method for low interaction is
phantom zero compensation.

PZ pattern

Design of the active antenna:

Correct the frequency characteristic using a phantom zero at
the input of the amplifier.

Function, performance,
costs and environment
Feedback configuration
Controller input stage
Controller output stage
Loop gain poles product
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Design of independent

performance aspects interaction
between
design aspects
| R gn asp
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response X SLICAP

Frequency compensation

f CES8LLE design
Correct the pole-zero pattern of the uncompensated amplifier O qc) O % % S O « g
without affecting other performance aspects. SEwm=+TLE aspects
T = © T 0 O
The preferred method for low interaction is § O 55522
' OS¢ aa wnN
phantom zero compensation. < S LE c S0 N
- : OGO - o0
Design of the active antenna: QS ; QL. 2
> — O C
Correct the frequency characteristic using a phantom zero at _% S o g S ©
the input of the amplifier. Y = = _E 2
: . U
Reduce the influence of out-of-band interference through § S 8 O o 8
bandwidth limitation (Master Class) w e O3
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Design of independent

performance aspects interaction
between
design aspects
| R gn asp
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response X SLICAP

Frequency compensation

f CES8LLE design
Correct the pole-zero pattern of the uncompensated amplifier O qc) O g g S O « g
without affecting other performance aspects. SEwm=+TLE aspects
T = © T 0 O
The preferred method for low interaction is § O 55522
' OS¢ aa wnN
phantom zero compensation. < S LE c S0 N
- : OGO - o0
Design of the active antenna: QS ; QL. 2
> — O C
Correct the frequency characteristic using a phantom zero at _% S o g S ©
the input of the amplifier. Y = = _E 2
. . n
Reduce the influence of out-of-band interference through § S % O o 8
bandwidth limitation (Master Class) w e O3
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Phantom-zero compensation
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Phantom-zero compensation

Cy = 2C',

[ 4]

—
L

—
L
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Phantom-zero compensation

Cy = 2C',

[ 4]

—
L

—
L

Circuit element values:
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Phantom-zero compensation

Cy = 2C',

[ 4]

—
L

—
L

Circuit element values:

Jm, = 23m
Jm, = 28m
Cs =5p

Ciss; = 1P
Ciss, — 1.2D
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Phantom-zero compensation

Cy = 2C',

[ 4]

—
L

—
L

Circuit element values:

Jm, = 23m
Jm, = 28m
Cs =5p

Ciss; = 1P
Cissy — 1.2D

Achievable MFM bandwidth:
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Phantom-zero compensation

Cy = 2C',

[ 4]

—
L

—
L

Circuit element values:

Jm, = 23m
Jm, = 28m
Cs =5p

Ciss; = 1P
Cissy — 1.2D

Achievable MFM bandwidth:

By = ;=+/LP, = 1.5GHz
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Phantom-zero compensation

Cy = 2C',

[ 4]

—
L

—
L

Circuit element values:

Jm, = 23m
Jm, = 28m
Cs =5p

Ciss; = 1P
Cissy — 1.2D

Achievable MFM bandwidth:

By = ;=+/LP, = 1.5GHz

Sum of the poles:
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Phantom-zero compensation

Cy = 2C',

[ 4]
I ]

—
L

L

Circuit element values:

Jm, = 23m
Jm, = 28m
Cs =5p

Ciss; = 1P
Cissy — 1.2D

Achievable MFM bandwidth:
By = ;=+/LP, = 1.5GHz

+
v Sum of the poles:
14
_ L - Cf+Cs+cissl -
l p1 =0, pp = TR.C(Coter) 450MHz
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Phantom-zero compensation

Cy = 2C',

[ 4]

—
L

—
L

Circuit element values:

Jm, = 23m
Jm, = 28m
Cs =5p

Ciss; = 1P
Cissy — 1.2D

Achievable MFM bandwidth:
By = ;=+/LP, = 1.5GHz

Sum of the poles:

L _ Cf+cs+cissl _
p1 =0, pg = ROy (Coronny) 450MHz

Frequency of the phantom zero
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Phantom-zero compensation

Cy = 2C',

[ 4]

—
L

—
L

Circuit element values:

Jm, = 23m
Jm, = 28m
Cs =5p

Ciss; = 1P
Cissy — 1.2D

Achievable MFM bandwidth:
By = ;=+/LP, = 1.5GHz

Sum of the poles:

L _ Cf+Cs+Cissl _
p1 =0, pg = ROy (Coronny) 450MHz

Frequency of the phantom zero

2

- \/§Bf—|—p1—|-p2 o _QWRPhZCS = —1GHz

z =
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Phantom-zero compensation

Cy = 2C',

[ 4]

—
L

—
L

Circuit element values:

Jm, = 23m
Jm, = 28m
Cs =5p

Ciss; = 1P
Cissy — 1.2D

Achievable MFM bandwidth:
By = ;=+/LP, = 1.5GHz

Sum of the poles:

L _ Cf+cs+cissl _
p1 =0, pg = ROy (Coronny) 450MHz

Frequency of the phantom zero

2

_\/§Bf—|—291—|-p2 o _QWRPhZCS = —1GHz

z =

Value of the compensation resistor
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Phantom-zero compensation

Cy = 2C',

[ 4]

—
L

—
L

Circuit element values:

Jm, = 23m
Jm, = 28m
Cs =5p

Ciss; = 1P
Cissy — 1.2D

Achievable MFM bandwidth:
By = ;=+/LP, = 1.5GHz

Sum of the poles:

L _ Cf+cs+cissl _
p1 =0, pg = ROy (Coronny) 450MHz

Frequency of the phantom zero

B2
_ f — 1
V2B ;+p1+po 2mRph-C's

— —1GHz

z =

Value of the compensation resistor

Roh. = ——%;CS — 301
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Phantom-zero compensation

Cy = 2C',

[ 4]

—
L

—
L

Circuit element values:

Jm, = 23m
Jm, = 28m
Cs =5p

Ciss; = 1P
Cissy — 1.2D

Achievable MFM bandwidth:
By = ;=+/LP, = 1.5GHz

Sum of the poles:

L _ Cf+Cs+Cissl _
p1 =0, pg = ROy (Coronny) 450MHz

Frequency of the phantom zero

B2
_ f — 1
V2B ;+p1+po 2mRph-C's

— —1GHz

z =

Value of the compensation resistor

Ron. = ——%;CS — 300
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Structured Electronic Design

Step 7
Design of the biasing concept
(iIdeal bias sources)

Anton .M. Montagne
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Design of independent

performance aspects interaction
between
l ) design aspects
9
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response \'4 SLICAP
Design of the biasing (ideal sources) X LIspice
sk Cc OO0+ CcO i
UE88855L dam dosim
QEEﬁﬁgﬂﬁ aSpeCtS
S s 2 3 3 »n N @
ESEceooa g
Q S o~ 2 o O
T vl
SCcE3TLC
O © © S5 o ©
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SHhPoca
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Design of independent

performance aspects interaction
between
l ) design aspects
9
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response \'4 SLICAP
Design of the biasing (ideal sources) X LIspice
Biasing concept
R Cc OO0+ CcO i
S58E255  dm ol
G EOCHH o P
Es32558e:X
S S caaunN®
- ccE0Q un
O S0 - 2 ©
2905°38 @
S2Y¥T O C
QU505
~ n Q -~ S (@)
SR Y Scg
S5 O Q o O
. O O Q

(c) 2021 A.J.M. Montagne 150



Design of independent

performance aspects interaction
between
‘ “‘ design aspects
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response \'4 SLICAP
Design of the biasing (ideal sources) X LIspice
Biasing concept
N ) ) .
Connect the circuit to the power supply Y S _S > O = GE) % « design
CERL22TEL aspects
e 0N n O G
£5355a°5
§ § 2 a0unN®
- ccE0Q un
O S0 - 2 ©
2905°8 &
S2Y¥T O C
QU505
~ n Q -~ S (@)
SHhPoca
. O O Q
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Design of independent

performance aspects interaction
between
l ) design aspects
9
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response \'4 SLICAP
Design of the biasing (ideal sources) X LIspice
Biasing concept
N ) ) .
Connect the circuit to the power supply 8 QCJ _S %3 %3 = GE) g « design
Redirect bias current sources over the power supply % § E T IRT '8 % g aspects
E5255a°25
SIE QW N O»
Cfgcces590 0
OgO_o0 ©
Qb ; 9 C O m
cc Ul c
O oS ©o®
= (n O "E _ O
SHhPoca
. O O Q
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Design of independent

performance aspects interaction
between
‘ “‘ design aspects
Setting up specifications |V SLICAP
Design of amplifier type: A, B, C, D| |V SLICAP
Feasibility of noise (temperature drift) specifications \'4 SLICAP
Feasibility of static and dynamic drive requirements \'4 LIspice
Design of midband accuracy and amplifier bandwidth \'4 SLICAP
Design of the frequency response \'4 SLICAP
Design of the biasing (ideal sources) X LIspice
Biasing concept
N ) ) .
Connect the circuit to the power supply 8 QCJ _S %3 %3 = GE) g « design
Redirect bias current sources over the power supply % & E R '8 % O aspects
Minimize the number of floating voltage sources ESo==goc
i © ) == R +J
OQITE QoW N O»
o > cc 0o n
CgS-09 O
U o o0
S2¥F I C
QT @50 ®
L8553
c O 8 O c O
. O O Q
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Design of independent

performance aspects interaction
between
‘ “‘ design aspects
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Biasing concept
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Biasing concept
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Structured Electronic Design

Step 8
Design of the sufficiently low weak nonlinearity
(iIdeal bias sources)

Anton .M. Montagne
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Check performance

Frequency response
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Check performance

Antenna referred noise
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Check performance
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Check performance

Frequency response Antenna referred noise IMD
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