Structured Electronic Design

EE3C11 SLiCAP

Anton J.M. Montagne

and

Structured Electronic Design:

Circuit (topology) synthesis	Functional requirements Find operating principle Apply error reduction techniques
Symbolic performance analysis	Performance parameters as a function of design parameters
Obtain design equations	Design parameters as a function of performance parameters
Solve design equations	Design parameters or show stopp
Numeric design verification	Numeric performance analysis

pers

SPICE netlist with symbolic circuit parameters

SLiCAP symbolic circuit analysis results

SLiCAP symbolic parameter analysis

SLiCAP numeric parameter solution

SLiCAP graphs, tables and reports

Capabilities

Symbolic and numeric analysis of linear time-invariant dynamic circuits

Transfer functions (Laplace Transform and Fourier Transform) Time domain analysis (inverse Laplace Transform) Pole-zero analysis

Symbolic and numeric noise analysis

Symbolic and numeric source and detector referred noise spectra Symbolic and numeric noise integration

Symbolic and numeric statistical DC analysis

Symbolic and numeric source and detector referred DC variance

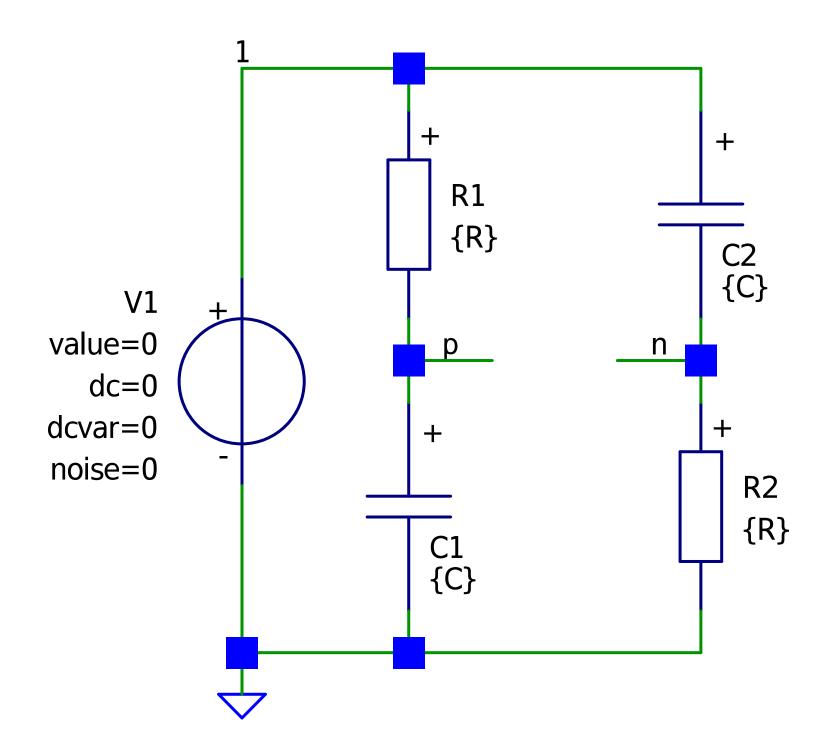
nvariant dynamic circuits Transform)

Design Education

Helps the students focus on the evaluation of analysis results rather than on the analysis itself

Helps the students to verify their own assumptions

Helps the students to create HTML design reports with: equations, tables, graphs and images


Demonstration

Download

Requirements and installation

MyFirstRCnetwork

Jupyter notebook python IDE ASCII editor and terminal

Assignment (5pts)

Obtain a symbolic expression for the transfer from V1 to the voltage between node p and node n

Plot the magnitude characteristic of this transfer with R=15.9k and C=1nF

Plot the phase characteristic of this transfer with R=15.9k and C=1nF

Plot the unit step response of this transfer with R=15.9k and C=1nF

Print the poles and zeros of this transfer with R=15.9k and C=1nF

Add a text paragraph in which you evaluate the obtained results

Put the above results in an HTML report, zip the HTML subdirectory of this project and upload it in Brightspace with the file name: <studentNumber>.zip